

Pulsonix Spice

Scripting Language Reference

2 Contents

 Contents 3

Copyright Notice

Copyright  2001-2024 WestDev Ltd. and SiMetrix Technologies Ltd
Pulsonix is a Trademark of WestDev Ltd. All rights reserved. E&OE

Copyright in the whole and every part of this software and manual belongs to WestDev Ltd.
and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner
or in any media to any person, without the prior written consent of WestDev Ltd. If you use
this manual you do so at your own risk and on the understanding that neither WestDev Ltd. nor
associated companies shall be liable for any loss or damage of any kind.

WestDev Ltd. does not warrant that the software package will function properly in every
hardware software environment.

Although WestDev Ltd. has tested the software and reviewed the documentation, WestDev
Ltd. makes no warranty or representation, either express or implied, with respect to this
software or documentation, their quality, performance, merchantability, or fitness for a
particular purpose. This software and documentation are licensed 'as is', and you the licensee,
by making use thereof, are assuming the entire risk as to their quality and performance.

In no event will WestDev Ltd. be liable for direct, indirect, special, incidental, or consequential
damage arising out of the use or inability to use the software or documentation, even if advised
of the possibility of such damages.

WestDev Ltd. reserves the right to alter, modify, correct and upgrade our software programs
and publications without notice and without incurring liability.

Microsoft, Windows, Windows NT and Intellimouse are either registered trademarks or
trademarks of Microsoft Corporation.

All other trademarks are acknowledged to their respective owners.

Pulsonix, a division of WestDev Ltd.

Printed in the UK. Issue date: 24/10/24 iss 4

Pulsonix
20 Miller Court
Severn Drive
Tewkesbury
Glos, GL20 8DN
United Kingdom

Phone +44 (0)1684 296 551
Email sales@pulsonix.com
Support support@pulsonix.com
Web www.pulsonix.com

4 Contents

 Contents 5

Contents

CONTENTS .. 5

CHAPTER 1. INTRODUCTION ... 13

Overview ... 13

Support for the Scripting language .. 13

CHAPTER 2. THE PULSONIX SPICE SCRIPT LANGUAGE .. 15

A Tutorial .. 15

Example 1: Hello World! ... 15

Example 2: An Introduction to Loops .. 15

Example 4: Script to curve trace a BJT .. 17

Variables, Constants and Types ... 20

Variable names .. 21

Types .. 21

Constants .. 21

Creating and Assigning Variables .. 22

New line Character .. 22

Vectors ... 22

Scope of Variables. Global Variables .. 23

Empty Values ... 23

Empty Strings .. 23

Quotes: Single and Double .. 24

Expressions .. 24

Operators .. 25

Functions .. 25

Braced Substitutions .. 26

Bracketed Lists .. 26

Type conversion ... 27

Aliases .. 27

Statements and Commands .. 27

Commands ... 27

Command Switches ... 27

If Statement .. 28

While Statement ... 29

For Statement ... 29

Script Statement ... 29

Exit Statement .. 30

Accessing Simulation Data .. 30

Overview .. 30

Groups .. 30

Collections ... 31

Multi-division Vectors ... 31

Multi-division Vectors in Functions .. 31

Vector References .. 33

Physical Type ... 33

User Interface to Scripts .. 33

Dialog Boxes .. 33

User Control of Execution ... 34

Errors ... 34

Syntax Errors ... 34

Execution Errors .. 34

Error Messages .. 34

Executing Scripts ... 35

Script Arguments ... 35

Built-in Scripts ... 36

Debugging Scripts .. 36

Startup Script ... 37

CHAPTER 4. FUNCTION REFERENCE ... 39

6 Contents

abs .. 39

AddRemoveDialog .. 39

arg .. 40

arg_rad ... 40

Ascii ... 41

atan .. 42

atan_deg ... 42

BoolSelect .. 42

CanOpenFile .. 43

ChangeDir .. 43

Char ... 44

ChooseDir .. 44

CloseEchoFile .. 44

CollectionName ... 44

ComposeDigital ... 45

CopyURL .. 46

cos .. 46

cos_deg .. 47

Date.. 47

dB .. 48

DefineCurveDialog .. 48

DescendDirectories .. 49

diff ... 50

EditAxisDialog .. 50

EditCrosshairDimensionDialog ... 51

EditCurveMarkerDialog .. 52

EditDeviceDialog .. 52

EditFreeTextDialog ... 53

EditGraphTextBoxDialog .. 53

EditLegendBoxDialog ... 53

EditSelect ... 54

EnterTextDialog .. 54

Execute .. 55

ExistDir .. 55

ExistFunction ... 55

ExistVec .. 56

EXP.. 56

FFT .. 56

Field ... 57

FindModel ... 57

FIR ... 57

Floor .. 58

FormatNumber... 58

Fourier ... 59

FourierOptionsDialog .. 59

FourierWindow .. 60

FullPath .. 60

GenPrintDialog .. 60

GetAllCurves ... 61

GetAllYAxes ... 61

GetAnalysisInfo ... 62

GetAxisCurves... 62

GetAxisLimits ... 62

GetAxisType .. 63

GetAxisUnits ... 63

GetColours ... 63

GetColourSpec... 63

GetConfigLoc .. 64

GetConvergenceInfo .. 64

GetCurDir .. 65

GetCurrentGraph ... 65

GetCursorCurve ... 65

GetCurveAxis .. 65

 Contents 7

GetCurveName .. 65

GetCurves .. 66

GetCurveVector ... 66

GetDatumCurve ... 66

GetDeviceDefinition .. 66

GetDeviceInfo .. 67

GetDeviceParameterName ... 67

GetDriveType .. 68

GetEnvVar ... 69

GetFile ... 69

GetFileCd ... 69

GetFileExtensions .. 70

GetFileSave .. 70

GetFonts ... 70

GetFontSpec ... 71

GetGraphObjects.. 71

GetGraphObjPropNames ... 71

GetGraphObjPropValue ... 71

GetGraphTitle .. 72

GetGroupInfo ... 72

GetGroupStepParameter .. 72

GetGroupStepVals ... 72

GetInstanceParamValues ... 73

GetInternalDeviceName... 73

GetLastError .. 74

GetLegendProperties .. 74

GetMenuItems ... 74

GetModelFiles ... 75

GetModelName .. 75

GetModelParameterNames .. 75

GetModelParameterValues .. 75

GetModelType ... 76

GetNonDefaultOptions .. 76

GetNumCurves .. 76

GetOption... 77

GetPath... 77

GetPlatformFeatures .. 77

GetPrinterInfo .. 77

GetPrintValues ... 78

GetSelectedCurves ... 78

GetSelectedGraphAnno ... 78

GetSelectedYAxis .. 78

GetSimConfigLoc .. 79

GetSimulationInfo.. 79

GetSimulationSeeds ... 79

GetSimulatorOption ... 79

GetSimulatorStats .. 80

GetSimulatorStatus .. 80

GetSoaResults .. 81

GetSystemInfo ... 81

GetUserFile .. 81

GetVecStepParameter .. 84

GetVecStepVals ... 84

GetWindowNames ... 84

GetXAxis ... 84

GraphLimits ... 84

GroupDelay .. 85

Groups .. 85

GroupsInCollection .. 85

HasLogSpacing .. 85

Histogram... 86

Iff ... 86

IIR .. 86

8 Contents

im ... 88

imag ... 88

InputGraph ... 88

Integ ... 88

Interp.. 88

IsComplex .. 89

IsFullPath ... 89

IsModelFile .. 89

IsNum .. 90

IsScript ... 90

IsStr.. 90

Length .. 90

ListDirectory .. 91

ln .. 91

Locate .. 91

log .. 91

log10 .. 92

mag .. 92

magnitude .. 92

MakeCollection ... 92

MakeDir ... 92

MakeString .. 93

Max .. 93

Maxidx ... 93

Maxima .. 93

Maximum .. 94

MCOptions .. 94

mean .. 95

Mean1 .. 95

MessageBox .. 95

Mid .. 96

Minidx ... 97

Min .. 97

Minima .. 97

Minimum ... 98

ModelLibsChanged ... 98

norm ... 98

NumDivisions .. 98

NumElems ... 98

OpenEchoFile .. 99

Parse .. 99

ParseParameterString ... 100

PathEqual ... 101

ph ... 101

phase .. 101

phase_rad ... 101

PhysType ... 102

Progress ... 102

QueryData .. 103

RadioSelect .. 104

Range ... 104

re .. 105

ReadClipboard ... 105

ReadConfigSetting ... 105

ReadFile ... 106

ReadIniKey .. 106

ReadRegSetting ... 107

real ... 107

Ref ... 107

RefName .. 107

RelativePath ... 108

RemoveModelFile ... 108

RestartTranDialog ... 108

 Contents 9

Rms .. 108

RMS1 ... 109

rnd .. 109

RootSumOfSquares.. 109

Scan .. 109

ScriptName .. 111

Search .. 111

SearchModels ... 111

SelectColourDialog .. 111

SelectColumns ... 112

SelectDialog ... 112

SelectFontDialog.. 113

SelectRows... 113

SelGraph .. 114

Shell ... 114

ShellExecute .. 115

sign ... 116

SimulationHasErrors .. 116

sin ... 116

sin_deg ... 116

Sleep .. 116

Sort ... 117

SortIdx ... 117

SplitPath ... 117

sqrt ... 118

Str ... 118

StringLength .. 118

StrStr .. 118

SumNoise ... 119

tan .. 119

tan_deg ... 119

Time ... 119

TranslateLogicalPath ... 120

TreeListDialog ... 120

TRUE ... 121

Truncate ... 121

Units ... 122

unitvec .. 122

UpDownDialog .. 123

Val .. 123

ValueDialog ... 123

vector ... 124

VectorsInGroup ... 124

WriteConfigSetting .. 124

WriteIniKey ... 125

WriteRawData ... 126

WriteRegSetting ... 126

XCursor .. 127

XDatum .. 127

XFromY ... 127

XY .. 127

YCursor .. 127

YDatum .. 128

YFromX ... 128

CHAPTER 3. COMMAND REFERENCE ... 129

Notation ... 129

Abort .. 129

About ... 130

AddCurveMarker ... 130

AddFreeText .. 130

AddGraphDimension ... 131

AddLegend ... 131

10 Contents

AddLegendProp ... 132

AddTextBox .. 132

Arguments ... 133

Cd .. 133

ChooseColour .. 133

ClearMessageWindow ... 133

Close .. 133

CloseGraphSheet ... 133

ClosePrinter ... 133

CollectGarbage .. 134

CreateFont ... 134

CreateGroup... 134

CreateToolButton .. 135

CursorMode ... 135

Curve ... 136

CurveEditCopy .. 138

DefButton .. 138

DefItem .. 138

DefineToolBar ... 140

DefKey .. 142

DefMenu .. 144

Del ... 146

DelCrv ... 146

DeleteAxis ... 146

DeleteGraphAnno .. 146

DelGroup ... 146

DelLegendProp .. 147

DelMenu .. 147

Discard ... 147

Display ... 147

Echo ... 148

EditColour ... 148

EditFile .. 148

EditFont ... 148

ExecuteMenu ... 148

Execute .. 148

Focus.. 149

FocusShell ... 149

Font .. 149

GraphZoomMode .. 149

Help ... 149

HideCurve .. 150

HighlightCurve .. 150

Hint .. 150

KeepGroup .. 150

Let .. 150

Listing .. 152

ListModels ... 152

ListStdButtonDefs ... 152

ListStdKeys ... 152

ListStdMenu .. 152

LoadModelIndex ... 152

MakeAlias .. 153

MakeCatalog .. 153

MakeCollection ... 153

MakeTree ... 153

Mcd .. 153

Md ... 154

MessageBox .. 154

MoveCurve .. 154

MoveFile .. 154

NewAxis .. 154

NewGraphWindow .. 154

 Contents 11

NewGrid... 154

NewPrinterPage ... 154

NoPaint .. 154

OpenGroup ... 155

OpenPrinter .. 155

OpenRawFile ... 155

OptionsDialog .. 156

Pause .. 156

PlaceCursor .. 156

Plot ... 156

PrintGraph .. 158

Quit .. 158

Rd ... 158

ReadLogicCompatibility .. 159

Redirect .. 160

RegisterDevice ... 160

RegisterUserFunction .. 160

RenameLibs ... 160

RepeatLastMenu .. 161

Reset .. 161

RestartTran ... 161

RestDesk .. 161

Resume... 161

Run ... 161

SaveDesk ... 163

SaveGraph .. 163

SaveGroup ... 164

SaveRhs ... 164

ScriptAbort... 164

ScriptPause... 165

ScriptResume ... 165

ScriptStep ... 165

SelectCursorMode.. 165

SelectCurve .. 166

SelectGraph .. 166

SelectLegends .. 166

Set .. 166

SetCurveName ... 166

SetGraphAnnoProperty .. 167

SetGroup .. 167

SetRef .. 167

SetToolBarVisibility .. 167

SetUnits .. 167

Shell ... 168

ShellOld ... 168

Show .. 168

ShowCurve... 169

ShowSimulatorWindow ... 169

SizeGraph... 169

Stats .. 170

Title .. 170

Trace .. 170

UndoGraphZoom ... 170

UnHighlightCurves .. 170

Unlet .. 171

Unset .. 171

ViewFile... 171

Wait .. 171

Where ... 171

WriteImportedModels .. 171

CHAPTER 4. APPLICATIONS .. 173

User Interface .. 173

12 Contents

User Defined Key and Menu Definitions .. 173

Rearranging or Renaming the Standard Menus ... 173

Menu Shortcuts .. 173

Modifying Internal Scripts ... 173

Custom Curve/Performance/Histogram Analysis ... 174

Adding New Functions .. 174

"measure", "measure_span", "performance" and "mc_histo" Scripts 174

An Example: The "Mean" Function .. 174

Automating Simulations .. 175

Overview ... 175

Running the Simulator ... 175

Changing Component Values or Test Conditions.. 175

An Advanced Example - Reading Values from a File ... 176

Data Import and Export ... 181

Importing Data ... 181

Exporting Data ... 181

Launching Other Applications ... 181

Data Files Text Format .. 181

Overview ... 182

Object Types .. 183

Properties ... 183

Graph Object Identifiers - the “ID” ... 183

Symbolic Values .. 184

Objects and Their Properties ... 184

on_graph_anno_doubleclick .. 190

on_accept_file_drop .. 190

Overview ... 191

Defining the Function .. 191

Registering the Script .. 191

Example ... 191

Non-interactive and Customised Printing ... 191

Overview ... 191

Procedure ... 192

Example ... 192

Modifying Existing Toolbars and Buttons ... 193

Redefining Button Commands .. 193

Defining New Buttons and Editing Buttons .. 193

Creating New Toolbars .. 194

Pre-defined Buttons ... 194

INDEX .. 195

Introduction 13

Chapter 1. Introduction

Overview

Pulsonix Spice features a simple interpreted script language, loosely based on BASIC, in which
most of the user interface is written.

This manual describes how users sympathetic to the concept of computer programming can
develop their own scripts or adapt the user interface by modifying the internal scripts.

We have identified three main applications for script development although there may be
others we haven't thought of. These are:

1. User interface modification perhaps to suit individual taste or for specialised
 applications.

2. Automated simulations. For example, you may have a large circuit which for which
 you need to run a number of tests. The simulations take along time so you would like
 to run them overnight or over a weekend. A simple script can perform this task.

3. Specialised analysis. The curve analysis functions supplied with Pulsonix Spice are
 all implemented using scripts. You can write your own to implement specialised
 functionality.

The scripting language is supported by about 150 functions and 100 commands that provide the
interface to the Pulsonix Spice core as well as some general purpose functionality.

Support for the Scripting language

The scripting language is only supported via email. It can only be supported in terms of options
within it and not on a code basis. If you require additional help with the coding of scripts, you
must approach us on a consultancy arrangement.

14 Introduction

The Script Language 15

Chapter 2. The Pulsonix Spice Script Language

A Tutorial

Example 1: Hello World!

Any one who has learnt the 'C' programming language will be familiar with the now celebrated
"Hello World" program - possibly the simplest program that can be written. Here we will write
and execute a Pulsonix Spice "Hello World" script.

The script is simple:

echo Hello World!

To execute and run this script start by selecting the File menu and Scripts, New Script this
simply launches notepad with the script directory as its working directory. Type :

echo Hello World!

Now save the text to a file called HELLO.SXSCR

To execute the script, type "hello" at the command line. You should see the message:

Hello World!

Appear in the message window. Scripts are executed by typing their filename at the command
line. If the file has the extension ".txt" the extension can be omitted. You can also assign a key
or menu to execute a script. Type at the command line:

DefKey F6 HELLO

Now press the <F6> function key. The message should appear again. For information on
defining menus see User Defined Key and Menu Definitions.

Example 2: An Introduction to Loops

This example adds up all the elements in a vector (or array). To create a vector we will run a
simulation on one of the example circuits. The whole process will be put into a script except
opening the schematic which we will do manually. (But this can be done from a script as well).

To start with, using Pulsonix open the example circuit \GENERAL\AMP.SCH. Make sure it is
selected to run a transient analysis and run the simulation.

Now select File|Scripts|New Script. This will open NOTEPAD or your selected text editor
with the current directory set to the SCRIPT. Type in the following:

let sum = 0

for idx=0 to length(vout)-1

 let sum = sum + vout[idx]

next idx

echo The sum of all values in vout is {sum}

Save the script to the file name SUM.SXSCR Now type SUM at the command line. A
simulation will run and the message:

The sum of all values in vout is -1.93804

Should appear in the message window. The exact value given may be different if you have
modified the circuit or set up different model libraries.

This script introduces four new concepts:

• For loops

• Braced substitutions ({sum} in the last line)

• Vectors (or arrays)

• Accessing simulation data

16 The Script Language

Let's go through this script line by line.

The line

let sum = 0

creates and initialises the variable sum which will ultimately hold the final result. The next

three lines is a simple for statement. The variable idx is incremented by one each time around

the loop starting at zero and ending at length(vout)-1. vout is a variable - actually a

vector - which was generated by the simulator and holds the simulated values of the voltage on
the VOUT net. This net is marked with a terminal symbol. length(vout) returns the

number of elements in vout . (1 is subtracted because idx starts at 0). In the line:

 let sum = sum + vout[idx]

vout[idx] is an indexed expression which returns element number idx of the vector vout.

sum is of course the accumulative total. The final line:

echo The sum of all values in vout is {sum}

contains the braced substitution {sum}. sum is evaluated and the result replaces expression

and the braces.

Example 3: Plot the sum of selected curves

This example demonstrates the use of the GetCurveVector function. This is a key function
used for analysing and processing displayed graphs.

** Script to plot sum of selected graph curves

Let selCurves = GetSelectedCurves()

Let numCurves = Length(selCurves)

if numCurves=0 then

 Echo "No selected graph curves available"

 exit script

endif

Let sum=0

for idx=0 to numCurves-1

 Let sum = sum + GetCurveVector(selCurves[idx])

next idx

Curve sum

This script introduces if statements ,arrays, comments and functions.

The first line:

** Script to plot sum of selected graph curves

is a comment. Any line beginning with a ‘*’ will be ignored.

The next line:

Let selCurves = GetSelectedCurves()

sets up an array of IDs for all selected curves on currently active graph sheet.

The next line:

Let numCurves = Length(selCurves)

uses the Length function to return the number of elements in the selCurves array.

The next line:

if numCurves=0 then

is the start of an if statement. It checks the numCurves variable previously set up to see if

any curves where selected.

If there were no curves selected, the lines:

The Script Language 17

 Echo "No selected graph curves available"

 exit all

will be executed. The first line calls the echo command to send to the message window all

subsequent text on the same line. The second line is an exit statement. In this case it causes
execution to abort and the rest of the script will be ignored.

The next line:

endif

terminates the if statement. For every if there must be a matching endif or end if.

If there were selected curves, the remainder of the script will now be executed. The next line:

Let sum=0

Creates and initialises the variable sum which will ultimately hold the final graph data.

The next line:

for idx=0 to numCurves-1

starts a for loop. The block of statements between this line and the matching next will be

repeated with the values of idx incrementing by 1 each time around the loop until idx

reaches numCurves-1, so the loop is repeated for all elements in selCurves.

The next line:

 Let sum = sum + GetCurveVector(selCurves[idx])

Uses a function GetCurveVector to return the data for a curve. selCurves[idx] is an

indexed expression which returns the element number idx of the vector selCurves, which

is a curve id.

If it's an AC analysis, this data will be complex. (Although the graphs only display the
magnitude the data is always stored in its original form which for an AC analysis is complex).
So if you add them up their phase will be taken into account. Its possible to test for complex
data using the IsComplex() function and then applying mag() if it is. This will then just add up
the magnitudes which may or may not be what is wanted depending on the application.

The next line:

next idx

terminates the for loop.

The final line:

Curve sum

Uses the Curve command to plot the result. You could do "Curve sum/numCurves" to

get the average instead. The command line "Plot sum" would do the same but create a new

graph.

Example 4: Script to curve trace a BJT

This example is included in the scripts directory on the CD, called ‘bjt_ic_vce_sa.sxscr’. It
runs a simulation on a dynamically created netlist to plot the I-V characteristics of an NPN or
PNP transistor. (A process sometimes known as "curve tracing").

The user will be prompted to enter the device part number and polarity i.e. NPN or PNP,
followed by the curve tracing parameters.

** Script to curve trace BJT

** Get user's device selection

Let result = EditSelect(['', 'NPN'], ['Part number', 'Polarity

(NPN/PNP)'], 'Define device')

** Exit if no device entered or cancel pressed

if result[0]='' then

18 The Script Language

 exit script

endif

Let device=result[0]

** Find polarity

if result[1]='NPN' then

 Let pol=1

elseif result[1]='PNP' then

 Let pol=-1

else

 Echo "Invalid polarity. Must be NPN or PNP"

 exit script

endif

** Find device and try and determine if its a model or

subcircuit.

Let loc = FindModel(device, 'q')

if length(loc)= 0 then

 Let loc = FindModel(device, 'x')

 if length(loc)<>0 then

 Let type='x'

 else

 Echo "Cannot find device" {device}

 exit script

 endif

else

 Let type = 'q'

endif

** Get curve trace parameters from user.

Let options = ValueDialog([1m, 15, 10], ['Max Base Current', 'Max

Collector Voltage', 'Number Steps'], 'BJT Trace Settings')

if Length(options)=0 then

 ** User cancelled

 Exit script

endif

Let IbMax = options[0]*pol

Let VceMax = options[1]*pol

Let numSteps = options[2]

** Create netlist to simulate

Echo /file design.net "* BJT curve trace"

if type='q' then

 Echo /append design.net "Q1 C B 0 0" {device}

else

 ** Subcircuits are assumed to be three terminal.

 ** Script will fail if they aren't

 Echo /append design.net "X1 C B 0" {device}

endif

The Script Language 19

Echo /append design.net "Vce C 0 0"

Echo /append design.net "Ib 0 B {Ib}"

Echo /append design.net ".dc Vce 0" {VceMax} {VceMax/50}

Echo /append design.net ".graph Vce#n curveLabel={curveLabel}

graphName={traceid}" ylabel= { '"Collector current ' & device &

'"'}

if not ExistVec('global:traceid') then

 Let global:traceid=1

endif

for global:Ib=IbMax/numSteps To IbMax step IbMax/numSteps

 Let global:curveLabel = 'Ib=' & global:Ib

 Run /file design.net

next global:ib

Let global:traceid=global:traceid+1

We will not go through every line of this script in detail, but instead will look at some of the
interesting points.

First consider the line:

Let result = EditSelect(['', 'NPN'], ['Part number', 'Polarity

(NPN/PNP)'], 'Define device')

This uses the EditSelect function to get strings from the user. It will show the following
dialog:

Next consider the line:

Let loc = FindModel(device, 'q')

The function FindModel returns the file name and line number where the device model is
stored. We don't need to know this but we do need to know if its implemented as a subcircuit
or as a model. FindModel will return empty (Length()=0) if wrong type of device is entered
as second argument, so we find whether its a 'q' device or an 'x' device by trying both of them.
If both fail then either the device isn't in the library or its not a BJT.

Next look at the line:

Let options = ValueDialog([1m, 15, 10], ['Max Base Current', 'Max

Collector Voltage', 'Number Steps'], 'BJT Trace Settings')

This uses function ValueDialog to get the curve trace parameters from user. This is initialised
in the function call with values suitable for a small signal non-darlington device. The
following dialog is displayed:

Next look at the line:

Echo /file design.net "* BJT curve trace"

This uses the Echo command to create a netlist file to simulate. ‘Echo /file’ and ‘Echo

/append’ are used in this script to create a file and then append strings to it, although it is

20 The Script Language

probably more efficient to create a string array with MakeString then use ‘show /plain

/file’ to write the strings to a file.

Now look at line:

Echo /append design.net ".graph Vce#n curveLabel={curveLabel}

graphName={traceid}" ylabel= { '"Collector current ' & device &

'"'}

The global variable ‘global:traceid’ is incremented each time this script is called. This

is used as the graphName parameter for .GRAPH and ensures a new graph sheet is created for
each run.

The line:

for global:Ib=IbMax/numSteps To IbMax step IbMax/numSteps

is interesting as it introduces the for loop concept of using step to increment the variable
global:Ib by more than one each time.

And lastly, the lines:

 Let global:curveLabel = 'Ib=' & global:Ib

 Run /file design.net

Plot each curve as shown in the following graph window:

Variables, Constants and Types

Pulsonix Spice scripts, like all computer programs, process data stored in variables. Variables
may hold real, complex or string data and may be scalar - possessing only a single value - or

single dimension arrays called vectors1.

1In Pulsonix Spice release 2.0 documentation, variables were always referred to as vectors even if they were actually scalar. This is just
different nomenclature. Variables, vectors, scalars and arrays are different names for the same thing.

The Script Language 21

Variable names

Variables names must be a sequence of characters but the first must be non-numeric. Any
character may be used except: \ " & + - * / ^ < > ' @ { } () [] ! % ; : |= and spaces.

Although it is legal the following names should be avoided as they are statement keywords:

all

do

else

elseif

end

endif

endwhile

exit

for

if

loop

next

script

step

then

to

while

Types

Variables may have real, complex or string type. Real and complex are self-explanatory.
Strings are a sequence of ASCII characters of any length.

Pulsonix Spice does not have an integer type. Although all numbers are represented internally
as floating point values, the format used permits integers to be represented exactly up to values
of about 252.

Constants

These can be real complex or string. Real numbers are represented in the usual way but may
also contain the engineering suffixes:

a 10-18

f 10-15

p 10-12

n 10-9

u 10-6

m 10-3

k 10+3

Meg 10+6

G 10+9

T 10+12

 Complex numbers are represented in the form:

(real, imaginary)

22 The Script Language

Strings are a sequence of text characters enclosed in single quotation marks. Single quotation
marks themselves are represented by two in succession.

Examples

Real:

2.3

4.6899

45

1e-3

1.2u

Complex

(1,1) means 1+i

(2.34,10) means 2.34+10i

String

'this is a string'

'This is a ''string'' '

Creating and Assigning Variables

Variables are created and assigned using the Let command. For example:

Let x=3

assigns the value 3 to the variable x. Note that "Let" is not optional as it is in most forms of
BASIC.

You can also assign complex numbers and strings e.g.

Let x=(5,1)

Let s='This is a string'

All of the above are scalar that is they contain only one value. Variables may also be single
dimension arrays called vectors. Vectors are described in the next section.

New line Character

To enter a new line character use '\\'. If you need a literal double backslash enclose it in
quotation marks i.e. "\\". Note however that the use of '\\' doesn't work inside braced
substitutions. To use a line feed in a braced substitution, assign the whole string to a variable
then put the variable inside the braces. E.g

Let error = 'Error:\\Too many nodes'

MessageBox {error}

Vectors

Vectors can be created using a bracketed list, with a function that returns a vector or by the
simulator which creates a number of vectors to represent node voltages and device currents. A
bracketed list is of the form:

[expression1, expression2, ...]

E.g.

let v = [1, 3, 9]

Functions and simulator vectors are described in following sections.

Vectors, like other variables may also contain strings or complex numbers but all the elements
must be the same type.

The Script Language 23

Individual elements of vectors may be accessed using square brackets: '[' and ']'. E.g.

let v = [1, 3, 9]

let a = v[2]

 'a' is assigned 9 in the above example. Index values start at 0 so the first element (1) is v[0].

It is also possible to assign values to individual elements e.g.

let v[2] = 5

In which case the value assigned must have the same type (i.e. real, complex or string) as the
other elements in the vector.

Vectors, like other variables may also contain strings or complex numbers but all the elements
must be the same type.

Scope of Variables. Global Variables

Variables created using the Let command are only available within the script where the Let
command was executed. The variable is destroyed when the script is completed and it is not
accessible to scripts that the script calls. If, however, the Let command was called from the
command line, the variable is then global and is available to all scripts until it is explicitly
deleted with the UnLet command.

If a global variable needs to be created within a script, the variable name must be preceded by
"global:". For example:

Let global:result = 10

"global:result" will be accessible by all scripts and from the command line. Further it will be
permanently available until explicitly deleted with UnLet. After the variable has been created
with the "global:" prefix, it can subsequently be omitted. For example in:

Let global:result = 10

Show result

Let result = 11

Show result

will display

result=10

result=11

in the message window. The variable result will be available to other scripts whereas if the

"global:" prefix had been left off, it would not. Although it is not necessary to include the
"global:" prefix except when first creating the variable, it is nevertheless good practice to do so
to aid readability of the script.

Empty Values

Some functions return "empty" values when they are unable to produce a return value. An
empty value contains no data. An empty value can be tested with the Length function which
will return 0. All other functions and operators will yield an error if presented with an empty
value.

Empty Strings

An empty string is one that has no characters. An empty string can be entered on a command
line with the character sequence:

{''}

Empty strings are not the same as empty values. An empty value has no data at all and will
result in an error if supplied to any function other than the Length function.

24 The Script Language

Quotes: Single and Double

Single quotation marks (') and double quotation marks (") both have a special, but different,
meaning in Pulsonix Spice and in the past this has been the source of much confusion. Here we
explain what each means and when they should be used.

Single quotes are used to signify a text string in an expression. Expressions are used as
arguments to the Plot, Curve, Let and Show commands, they are used in braced substitutions
and also as the tests for if, for and while statements. These are the only places where you will
find or need single quotes.

Double quotes are used in commands to bind together words separated by spaces or semi-
colons so that they are treated as one. Normally spaces and semi-colons have a special meaning
in a command. Spaces are used to separate arguments of the command while semi-colons
terminate the command and start a new one. If enclosed within double quotes, these special
meanings are disabled and the text within the quotes is treated as a single argument to the
command. Double quotes are often used to enclose strings that contain spaces (see example)
but this doesn't necessarily have to be the case.

Examples

Let PULSE_SPEC = 'Pulse 0 5 0 10n 10n 1u 2.5u'

In the above line we are assigning the variable PULSE_SPEC with a string. This is an

expression so the string is in single quotes. Let is a command but it is one of the four
commands that take an expression as its argument.

Plot /name "amp out" vout

Plot is a command that creates a new graph for the supplied vector, in this example the vector
is the signal name ‘vout’. This example uses a switch to name the curve “amp out”, but this
has spaces in so we must enclose it in double quotation marks so that the command treats it as
a single string. If there were no quotes, ‘amp’ and ‘out’ would be treated as additional vectors
to be plotted rather than being the name of the curve. If an argument contains no spaces or
semi-colons then no quotes are necessary although they will do no harm if present.

Where you need both single and double quotes

There are situations where both single and double quotes are needed together. In some of the
internal scripts you will find the Scan command (page 109) used to split a number of text
strings separated by semi-colons. The second argument to Scan is a string and must be
enclosed in single quotation marks. But this argument is also a semi-colon which, despite being
enclosed in single quotes, will still be recognised by the command line interpreter as an end-of-
command character. So this must be enclosed in double quotes. The whole expression can be
enclosed in double quotes in this case.

If you need a literal quote

If you need a string that contains a double or single quote character, use two of them together.

Expressions

An expression is a sequence of variable names, constants, operators and functions that can be
evaluated to yield a result. Expressions are required by four commands: Let, Curve, Plot and
Show and they are also used in braced substitutions and if statements, while statements and for

statements. This section describes expression syntax and how they are evaluated.

Examples

x+2

(v1_p-vout)*r1#p

idx<15

vout[23]-vout[22]

'Hello ' & 'World'

The Script Language 25

Operators

Loosely, expressions are constants, variables or/and function calls separated by operators.
Available operators are:

Arithmetic:

+ - * / ^ %

'%' performs a remainder function

Relational

< > == <= >=

Important: a single '=' can be used as equality operator if used in an if or while statement. In

other places it is an assignment operator and '==' must be used for equality.

Logical

AND, OR, NOT,

&& || !

Note: AND, OR, NOT are equivalent to && || ! respectively.

String

& (concatenation)

Operator precedence

When calculating an expression like 3+4*5, the 4 is multiplied by 5 first then added to 3. The
multiplication operator - '*' - is said to have higher precedence then the addition operator - '+'.
The following lists all the operators in order of precedence.

() []

Unary - +2 NOT !

^

* / %

+ -

< > <= >= ==

AND &&

OR ||

&

=

,

Notes

1. A single '=' is interpreted as '==' meaning equality when used in if statements and while

statements and has the same precedence.

2. Parentheses have the highest precedence and are used in their traditional role to change
order of evaluation. So (3+4)*5 is 35 whereas 3+4*5 is 23.

3. The comma ',' is used as a separator and so has the lowest precedence.

Functions

Functions are central to Pulsonix Spice scripts. All functions return a value and take zero or
more arguments. The sqrt function for example takes a single argument and returns its square
root. So:

2E.g. In 5*-3, the '-' is a unary operator - applying to a single value not operating on two values. In this instance '-' has higher
precedence than '*'.

26 The Script Language

Let x = sqrt(16)

will assign 4 to x.

Functions are of the form

function_name([argument, ...])

Examples

Function taking no arguments:

NetName()

function taking two arguments:

FFT(vout, 'Hanning')

Functions don't just perform mathematical operations like square root. There are functions for
string processing, functions which return information about the simulation data and user
interface functions. Complete documentation on all available functions is given in Chapter 3.

Braced Substitutions

A braced substitution is an expression enclosed in curly braces '{' and '}'. When the script
interpreter encounters a braced substitution, it evaluates the expression and substitutes the
expression and the braces with the result of the evaluation - as if it had been typed in by the
user. Braced substitutions are important because, with the exception of the Let, Show, Plot and
Curve commands, commands cannot accept expressions as arguments. For example, the Echo
command displays in the message window the text following the Echo. If the command "Echo
x+2" was executed, the message "x+2" would be displayed not the result of evaluating "x+2".
If instead the command was "Echo { x+2 }" the result of x+2 would be displayed.

If the expression inside the braces evaluates to a vector each element of the vector will be
substituted. Note that the line length for commands is limited (although the limit is large - in
excess of 2000 characters) so substituting vectors should be avoided unless it is known that the
vector does not have many elements.

Braced substitutions may not be used in the control expression for conditional statements,
while loops and for loops. For example, the following is not permitted

if {GetNumCurves()} < 10 then

To achieve the same result the result of the braced expression must be assigned to a variable
e.g.:

let n = {GetNumCurves()}

if n < 10 then

Braced substitutions are also permitted in netlists. See the Pulsonix Spice User's manual.

Bracketed Lists

These are of the form

[expression1, expression2, ...]

The result of a bracketed list is a vector of length equal to the number of expressions separated
by commas. There must be at least one expression in a bracketed list - an empty list is not
permitted. For example:

Let v = [3, 5, 7]

assigns a vector of length 3 to v. So v[0]=3, v[1]=5 and v[2]=7. The expressions in a bracketed
list may be any type, as long they are all the same. The following for example, is illegal:

Let v = [3, 'Hello', 'World']

The second element is of type string whereas the first is real. The following example is
however legal:

Let v = ['3', 'Hello', 'World']

3 which is real has been replaced by '3' which is a string.

The Script Language 27

Type conversion

Most functions and operators expect their arguments to be of a particular type. For example the
'+' operator expects each side to be a numeric (real or complex) type and not a string.
Conversely, the '&' operator which concatenates strings naturally expects a string on each side.
The majority of functions also expect a particular type as arguments, although there are some
that can accept any type.

In the event that the type presented is wrong, Pulsonix Spice will attempt to convert the value
presented to the correct type. To convert a numeric value to a string is straightforward, the
value is simply represented in ASCII form to a reasonable precision. When a string is presented
but a numeric value is required, the string is treated as if it were an expression and is evaluated.
If the evaluation is successful and resolves to the correct type the result is used as the argument
to the operator or function. If the evaluation fails for any reason an error message will be
displayed.

Aliases

An alias is a special type of string. Alias strings hold an expression which is always evaluated
when used. The simulator outputs some of its data in alias form to save memory and simulation
time. For example, the currents into subcircuit pins are calculated by adding the currents of all
devices within the subcircuit connected to that pin. This current is not calculated during
simulation but the expression to perform that calculation is stored as an alias so that it can be
calculated if needed.

Statements and Commands

Scripts are composed of a sequence of statements. Statements usually comprise at least one
command and optionally control words such as if and then. A command is a single line of

text starting with one of the 100 or so command names listed in the Command Reference.

There are six types of statement. These are:

command statement

if statement

while statement

for statement

jump statement

script statement

Commands

Commands begin with one of the names of commands listed in chapter 4. A command
performs an action such as running a simulation or plotting a result. E.g.:

Plot v1_p

is a command that will create a graph of the vector v1_p. The syntax varies for each

command. Full details are given in the Command Reference.

All commands must start on a new line or after a semi-colon. They must also end with a new
line or semi-colon.

A command statement is a sequence of one or more commands.

Command Switches

Many commands have switches. These are always preceded by a '/' and their meaning is
specific to the command. There are however four global switches which can be applied to any
command. These must always be placed immediately after the command. Global switches are
as follows:

• /e Forces command text to copied to command history

• /ne Inhibits command text copying to command history

28 The Script Language

• /quiet Inhibits error messages for that command. This only stops error message being
displayed. A script will still be aborted if an error occurs but no message will be output

• /noerr Stops scripts being aborted if there is an error. The error message will still be
displayed.

If Statement

An if statement is of the form:

if expression then

 statement

endif

or:

if expression then

 statement

else

 statement

endif

or

if expression then

 statement

[[elseif expression then

 statement]...]

else

 statement

endif

Examples

if NOT SelGraph() then

 echo There are no graphs open

 exit all

endif

if length(val)==1 then

 echo {refs[idx]} {val}

else

 echo Duplicate reference {refs[idx]}. Ignoring

endif

if opts[0] && opts[1] then

 let sel = 1

elseif opts[0] then

 let sel = 2

else

 let sel = 3

endif

The Script Language 29

In form1, if the expression resolves to a TRUE value the statement will be executed. (TRUE
means not zero, FALSE means zero). In the second form the same happens but if the
expression is FALSE the statement after the else is executed. In the third form, if the first

expression is FALSE, the expression after the elseif is tested. If that expression is TRUE

the next statement is executed if not control continues to the next elseif or else.

While Statement

While statements are of the form:

do while expression

 statement

loop

or alternatively

while expression

 statement

endwhile

Example

do while GetOption(opt)<>'FALSE'

 let n = n+1

 let opt = 'LibFile' & (n+99)

loop

Both forms are equivalent.

In while loops the expression is evaluated and if it is TRUE the statement is executed. The
expression is then tested again and the process repeated. When the expression is FALSE the
loop is terminated and control passes to the statement following the endwhile.

For Statement

These are of the form:

for variable=expression1 to expression2 [step constant]

 statement

next variable

Example

This finds the sum of all the values in array.

for idx=0 to length(array)-1

 let sum = sum + array[idx]

next idx

A for loop executes statement for values of variable starting at expression1 and ending with
expression2. Each time around the loop variable is incremented by expression3 or if there is no
step expression, by 1. If expression2 starts off with a value less than expression1, statement
will not be executed at all.

Script Statement

A script statement is a call to execute another script. Scripts are executed initially by typing
their name at the command line (or if the script has .txt extension, the .txt should be used) or
selecting a key or menu which is defined to do the same. Scripts can also be called from within
scripts in which case the call is referred to as script statement. Note that a script may not call
itself.

30 The Script Language

Exit Statement

There are four types:

exit while

exit for

exit script

exit all

exit while forces the innermost while loop to terminate immediately. Control will pass to

the first statement after the terminating endwhile or loop.

exit for does the same for for loops.

exit script will force the current script to terminate. Control will pass to the statement

following the call to the current script.

exit all will abort all script execution and control will return to the command line.

Accessing Simulation Data

Overview

When a simulation is run, a number of vectors (scalars for dc operating point) are created
providing the node voltages and branch currents of the circuit. These are just like variables
used in a script and can be accessed in the same way. There are however a number of
differences from a normal variable. These are as follows:

• Simulation vectors are placed in their own group.

• They are usually attached to a reference vector.

• They usually have a physical type (e.g. Volts, Amps etc.)

• Some are aliases.

Each of these is described in the following sections.

Groups

All variables are organised into groups. When Pulsonix Spice first starts, there is only one
called the Global group and all global variables are placed in it. (See "Scope of Variables.
Global Variables"). When a script executes a new group is created for it and its own - local -
variables are placed there. The group is destroyed when the script exits as are its variables.

Each time a simulation run is started a new group is created and the data generated by the
analysis is placed in the group. Groups from earlier runs are not immediately destroyed so that
results from earlier runs can be retrieved. By default, three simulation groups are kept at any
time with the oldest being purged as new ones are created. A particular group can be prevented
from being purged by selecting the Graphs and Data menu and Keep Current Data Group.

Groups provide a means of organising data especially simulation data and makes it possible to
keep the results of old simulation runs.

All groups have a name. Simulation group names are related to the analysis being performed.
E.g. transient analyses are always trann where n is a number chosen to make the name unique.

Variables within a group may be accessed unambiguously by using their fully qualified name.
This is of the form:

groupname:variable name

E.g. tran1:vout

The Current Group

At any time a single group is designated the current group. This is usually the group containing
the most recent simulation data but may be changed by the user with the Graphs and
Data|Change Data Group... menu or with the SetGroup command. If a variable name is used
in an expression that is not local (created in a script) or global, the current group is searched for

The Script Language 31

it. So when the command "Plot vout" is executed if vout is not a local or global variable
Pulsonix Spice will look for it in the current group.

You can view the variables in the current group with the Display command. Run a simulation
and after it is completed type Display at the command line. A list of available variables from
the simulation run will be displayed. Some of them will be "aliases".

The ':' prefix

If a variable name is prefixed with a colon it tells Pulsonix Spice to only search the current
group for that name. Local or global variables of the same name will be ignored.

The colon prefix also has a side effect which makes it possible to access vectors created from
numbered nodes. SPICE2 compatible netlists can only use numbers for their node (=net)
names. Pulsonix Spice always creates simulation vectors with the same name as the nets. If the
net name is a number, so is the variable name. It was stated earlier that variable names must
begin with a non-numeric character but in fact this is only partly true. Variable names that start
with a digit or indeed consist of only digits can be used provided they are always accessed with
the ':' prefix and therefore must reside in the current group.

Collections

Collections were originally developed for versions 2.0 to 3.1 and were used for multi- step
analyses such as Monte Carlo. The data for these analyses are now organised very differently
using multi-division vectors described below.

Collections are still supported but are no longer used by the front end. They continue to be
provided for backward compatibility but support for them may be withdrawn for future
releases.

Multi-division Vectors

Multi-step runs such as Monte Carlo produce multiple vectors representing the same physical
quantity. In Pulsonix Spice version 3.1 and earlier these vectors remained independent but the
groups to which they were attached were bundled together into a collection. From version 4 the
multiple vectors are in effect joined together into a multi-division vector. This is similar to a
two dimensional vector (or array or matrix) except that the rows of the matrix are not
necessarily all the same length.

When plotting a multi-division vector, each individual vector - or division - will be displayed
as a single curve. If listing or printing a multi-division vector with the Show command, all the
divisions will be listed separately.

You can access a single vector (or division) within a multi-division vector using the index
operators - '[' and ']'. Suppose VOUT was a multi-division vector with 5 divisions. Each
individual vector can be accessed using VOUT[0], VOUT[1], VOUT[2], VOUT[3] and VOUT[4]. Each of
these will behave exactly like a normal single division vector. So, you can use the index
operator to access single elements e.g. VOUT[2][23] retrieves the single value at index 23 in
division 2.

To find the number of divisions in a multi-division vector, use the function NumDivisions.

You can collate values at a given index across all divisions using the syntax:
vectorname[][index]. E.g. in the above example VOUT[][23] will return a vector of length 5
containing the values of index 23 for all 5 divisions.

Multi-division vectors may be combined using arithmetic operators provided either both sides
of the operator are compatible multi-division vectors - i.e. have identical x- values - or one of
the values is a scalar.

Multi-division Vectors in Functions

Not all functions accept multi-division vectors for their arguments. The following table lists the
functions that do accept multi-division vectors. The entry for each argument specifies whether
that argument accepts multi-division vectors and how the data is dealt with.

“X” Multi-division vectors are not accepted for this argument.

“Scalar” The function acts on the multi-division vector to obtain a scalar value.

32 The Script Language

“Vector” The function obtains a scalar value for each division within the multi-
division vector.

“Multi” The function processes all the vector's data to return a multi- division
vector

Function name Arg 1 Arg 2 Arg 3 Arg 4

abs Multi

atan Multi

atan_deg Multi

cos Multi

cos_deg Multi

db Multi

DefineFourierDialog X Scalar

diff Multi

Execute X Multi Multi Multi

exp Multi

fft Multi X

FIR Multi X X

Fourier Multi X X X

FourierOptionsDialog X Scalar

FourierWindow Multi X X

GetVecStepParameter Scalar

GetVecStepVals Scalar

GroupDelay Multi

Histogram Multi X

IIR Multi X X

im Multi

imag Multi

integ Multi

Interp Multi X X X

IsComplex Scalar

IsNum Scalar

IsStr Scalar

Length Scalar

ln Multi

log Multi

log10 Multi

mag Multi

magnitude Multi

maxidx Multi

Maxima Multi X X

Maximum Multi X X

mean Multi

Mean1 Multi X X

minidx Multi

Minima Multi X X

Minimum Multi X X

norm Multi

NumDivisions Scalar

NumElems Vector

ph Multi

phase Multi

phase_rad Multi

PhysType Scalar

Range Multi X X

The Script Language 33

re Multi

real Multi

Ref Multi

RefName Scalar

Rms Multi

RMS1 Multi X X

rnd Multi

RootSumOfSquares Multi X X

sign Multi

sin Multi

sin_deg Multi

sqrt Multi

SumNoise Multi X X

tan Multi

tan_deg Multi

Truncate Multi X X

Units Scalar

Val Multi

XFromY Multi X X X

XY Multi Multi

YFromX Multi X X

Vector References

Simulation vectors are usually attached to a reference. The reference is a vector's x-values. E.g.
any vector created from a transient analysis simulation will have a reference of time. AC
analysis results have a reference of Frequency.

Vectors created by other means may be assigned a reference using the SetRef command.

Physical Type

Simulation vectors also usually have a Physical Type. This identifies the values units e.g. Volts
or Amps. When evaluating expressions Pulsonix Spice attempts to resolve the physical type of
the result. For example, if a voltage is multiplied by a current, Pulsonix Spice will assign the
Physical Type Watts to the result.

Any vector can be assigned a physical type using the SetUnits command.

User Interface to Scripts

Dialog Boxes

A number of functions are available which provide means of obtaining user input through
dialog boxes. These are:

Function name Page Comment

AddRemoveDialog 39 Add or remove items to or from a

list
BoolSelect 42 Up to 6 check boxes.
ChooseDir 44 Select a directory
EditSelect 54 Up to 6 edit boxes
EnterTextDialog 54 Enter multi line text
GetUserFile 81 Get file name (general purpose)
InputGraph 88 Input text for graph
RadioSelect 104 Up to 6 radio buttons
SelectDialog 112 Select item(s) from a list
TreeListDialog 120 Select item from tree structured list
UpDownDialog 123 Re order items
ValueDialog 123 Up to 10 edit boxes for entering

values

The above are the general purpose user interface functions. There are many more specialised
functions. These are listed in “Functions by Application”.

34 The Script Language

User Control of Execution

Sometimes it is desirable to have a script free run with actions controlled by a key or menu
item. For example you may require the user to select an arbitrary number of curves on a graph
and then press a key to continue operation of the script to perform - say - some calculations
with those curves. You can use the DefKey and DefMenu commands to do this. However, for
a key or menu to function while a script is executing, you must specify "immediate" mode
when defining it. Only a few commands may be used in "immediate" mode definitions. To
control script execution, the Let command may be used. The procedure is to have the key or
menu assign a global variable a particular value which the script can test. The following
example outputs messages if F2 or F3 is pressed, and aborts if F4 is pressed.

defkey F2 "scriptresume;let global:test=1" 5

defkey F3 "scriptresume;let global:test=2" 5

defkey F4 "scriptresume;let global:test=0" 5

let global:test = -1

while 1

 scriptpause

 if global:test=0 then

 exit script

 elseif global:test=1 then

 echo F2 pressed

 elseif global:test=2 then

 echo F3 pressed

 endif

 let global:test = -1

endwhile

unlet global:test

Errors

Loosely, there are two types of error, syntax errors and execution errors.

Syntax Errors

Syntax errors occur when the script presented deviates from the language rules. An endif

missing from an if statement for example. Pulsonix Spice will attempt to find all syntax errors -
it won't abort on the first one - but it will not execute the script unless the script is free of
syntax errors. Sometimes one error can hide others so that fixing syntax errors can be an
iterative process. On many occasions Pulsonix Spice can identify the details of the error but on
some occasions it is unable to determine anything other than the fact that it isn't right. In this
instance a "Bad Statement" error will be displayed. These are usually caused by unterminated
if, while or for statements. Although in many cases Pulsonix Spice can correctly identify an
unterminated statement, there are some situations where it can't.

Note that a syntax error in an expression will not be detected until execution.

Execution Errors

These occur when the script executes and are mostly the result of a command execution failure
or an expression evaluation failure. Refer to error message documentation in the Help system
for details of individual messages.

Error Messages

A listing of virtually all possible error messages is provided in the on-line help. This can be
accessed from the Help menu and Error Messages.

The Script Language 35

Executing Scripts

Scripts are executed by typing their file name at the command line or selecting the menu
File|Scripts|Run Script...Additionally, scripts can be assigned to a key or menu. See “ User
Defined Key and Menu Definitions”.

If a full pathname is not given, the simulator first searches a number of locations. The rules are
a little complicated and are as follows:

1. Search the BiScript directory followed by all its descendants. On Windows the
BiScript directory is usually at <root>\support\biscript.

2. Search for a built in script of that name. Built in scripts are bound into the executable
binary of the program. See “Built-in Scripts”.

3. Search the SCRIPT directory. This is defined by the ScriptDir option which can also
be accesses in the File Locations tab of the options dialog box.
(File|Options|General...).

4. Search the User Script list of directories. This is defined by the UserScriptDir option
variable. This may be set to a semi-colon delimited list of search paths.

5. Search the current working directory if the script was executed from a menu or the
command line. If the script was called from another script, the directory where the
calling script was located is searched instead

Scripts can also be executed using the Execute command.

Script Arguments

You can pass data to and from scripts using arguments.

Passing by Value

To pass a value to a script, simply place it after the script name. E.g.

my_script 10

The value 10 will be passed to the script. There are two methods of retrieving this value within
the script. The easiest is to use the Arguments command. In the script you would place a line
like:

Arguments num

In the above the variable num would be assigned the value 10. If the Arguments command is

used, it becomes compulsory to pass the argument. If you wish to provide a script with optional
arguments you must use the $arg variables. When an argument is passed to a script a variable
with name $argn is assigned with the value where n is the position of the argument on the
command line starting at 1. To find out if the argument has been passed, use the ExistVec
function. E.g.

if ExistVec('$arg1') then

 .. action if arg 1 passed

else

 .. action if arg 1 not passed

endif

Passing by Reference

When an argument is passed by value, the script in effect obtains a local copy of that data. If it
subsequently modifies it, the original data in the calling script remains unchanged even if a
variable name was used as the argument. The alternative is to pass by reference which provides
a means of passing data back to the calling script. To pass by reference you must pass a
variable prefixed with the '@' character. E.g.

Let var = 10

my_script @var

36 The Script Language

To retrieve the value in the called script we use the Arguments command as we did for
passing by value but also prefix with '@'. E.g.

Arguments @var

Let var = 20

The above modifies var to 20 and this change will be passed back to the var in the calling

script. In the above example we have used the same variable name var in both the called and

calling scripts. This is not necessary, we have just done it for clarity. You can use any name
you like in either script.

Optional arguments passed by reference work the same way as arguments passed by value
except that instead of using the variable $argn you must use $varn. You do not need to use '@'
when accessing arguments in this way. See the internal script define_curve for an example.

Important. There is currently a limitation that means you can't use an argument passed by
reference directly in a braced substitution. E.g.

{var}

where var is an argument passed by reference will not work. Instead you can assign the value

to a local variable first. This is a limitation of the current release and will be corrected in the
future.

Passing Large Arrays

In many computer languages it is usually recommended that you pass large data items such as
arrays by reference as passing by value involves making a fresh copy which is both time
consuming and memory hungry. Passing by reference only passes the location of the data so is
much more efficient. In the Pulsonix Spice script language, however, you can efficiently pass
large arrays by value as it uses a technique known as "Copy on Write" that does not make a
copy of the data unless it is actually modified.

Built-in Scripts

All the scripts needed for the standard user interface are actually built in to the executable file.
The source of all of these is supplied on the CD in a scripts directory.

Debugging Scripts

To see display of commands executed

You can watch the script being executed line by line by typing at the command line before
starting the script:

Set EchoOn

This will cause the text of each command executed to be displayed in the message window.
When you have finished you cancel this mode with:

Unset EchoOn

To single step a script

Run the script by typing at the command line:

ScriptPause ; scriptname

where scriptname is the name of the script you wish to debug. To be useful it is suggested that
you enable echo mode as described above. To single step through the script, press F2.

Note that ScriptPause only remains in effect for the first script. Subsequent scripts will execute
normally.

To abort a currently executing script

Press escape key

To pause a currently executing script

The Script Language 37

Press shift-F2. Note that it is not possible to run other commands while a script is paused but
you can single step through it using F2.

To resume a paused script

Press <Ctrl-F2>

Startup Script

The startup script is executed automatically each time the simulator is launched. By default it is
called startup.sxscr but this name can be changed with in the options dialog box.
(File|Options|General...). The startup file may reside in the script directory (defined by
ScriptDir option variable) or in a user script directory (defined by UserScriptDir option
variable).

The most common use for the startup script is to define custom menus and keys but any
commands can be placed there.

To edit the startup script, select the File|Scripts|Edit Startup menu item.

38 Commands

 Commands 39

Chapter 4. Function Reference

Unsupported Functions

A very small number of functions are designated as unsupported. These are usually
functions we developed for internal use and are not used by the user interface. They are
unsupported in so much as we will be unable to fix problems that you may encounter with
them.

If you do use an unsupported function and it is useful to you, please tell technical support -
by Email preferably. If a number of users find the function useful we will raise its status to
supported.

abs

Arguments:

Type: real/complex array

Description: vector

Compulsory: Yes

Default:

Return type: real array

Returns absolute value or magnitude of argument. This function is identical to the mag()
function.

AddRemoveDialog

Arguments:

Type: string array string array string array string

Description: Initial contents of
selected list box

All items available Options Box style

Compulsory: Yes Yes No No

Default: <<empty>> 'horizontal'

Return type: string array

Opens a dialog box to allow user to select from a number of items

40 Commands

The above shows the use of this function for adding and removing model libraries. The
function is not, however, restricted to this application.

The function will display in the lower list box, all items found in both arguments 1 and
arguments 2 with no duplicates. In the top list box, only the items found in argument 1 will
be displayed. The user may freely move these items between the boxes. The function
returns the contents of the top list box as an array of strings.

Argument 3 is a string array of size up to four, which may be used to specify a number of
options. The first three are used for text messages and the fourth specifies a help topic to be
called when the user presses the Help button. The help button will not be shown if the
fourth element is empty or omitted.

0 Dialog box caption
1 Label for selected box
2 Label for available box
3 Help topic name

Argument 4 determines the style of the box. The above diagram shows the default (if arg 4
is absent, empty or 'horizontal'). If arg4 is set to 'vertical', the two list boxes will be
arranged side by side instead of above each other

The function returns an empty vector if "Cancel" is selected.

arg

Type real/complex

Description vector

Compulsory Yes

Default

Return type: real

Returns the phase of the argument in degrees. Unlike the functions phase and phase_rad,
this function wraps from 180 to -180 degrees. See arg_rad function below for a version that
returns phase in radians.

arg_rad

Type real/complex

Description vector

Compulsory Yes

Default

 Commands 41

Return type: real

Returns the phase of the argument in radians. Unlike the functions phase and phase_rad,
this function wraps from p to -p radians. See arg function above for a version that returns
phase in degrees.

Ascii

Type string

Description

Compulsory Yes

Default

Return type: real

Returns the ASCII code for the first letter of the argument

42 Commands

atan

Arguments:

Type: real/complex

Description: vector

Compulsory: Yes

Default:

Return type:real/complex array

Returns the arc tangent of its argument. If degrees option is set return value is in degrees
otherwise radians.

atan_deg

Type real/complex

Description vector

Compulsory Yes

Default

Return type:real/complex array

Returns the arc tangent of its argument. Result is in degrees.

BoolSelect

Arguments:

Arguments:

Type real string string

Description Initial check box

settings

Labels Dialog Box Caption

Compulsory No No No

Default

Arguments:

Return type: real array

Opens a dialog box with up to 6 check boxes. The return value is a real vector containing
the user's check box settings. 1 means checked, 0 means not checked. The number of check
boxes displayed is the smaller of the length of arguments 1 and 2. If neither argument is
supplied, 6 check boxes will be displayed without labels.

If the user cancels the operation, an empty value is returned. This can be checked with the
length() function.

 Commands 43

Example

The following dialog box is displayed after a call to:

BoolSelect([0,1,0], ['Label1', 'Label2', 'Label3'], 'Caption')

See Also

EditSelect

RadioSelect

ValueDialog

CanOpenFile

Type string string

Description file name options

Compulsory Yes No

Default read

Return type: real

Returns TRUE (1) if file specified by argument 1 can be opened otherwise returns FALSE
(0). Argument 2 may be set to ‘read’ (the default) or ‘write’ specifying what operation is
required to be performed on the file.

This function takes account of lock files used to prevent other instances of Pulsonix from
opening a file. For example, when a schematic is opened in non read only mode, a lock file
is created which will prevent another instance of Pulsonix from opening that file but will
not prevent another application from opening the file. CanOpenFile will return false for
such files when ‘write’ mode is specified.

ChangeDir

Arguments:

Type: string

Description: New directory

Compulsory: Yes

Default:

Return type: real

Change current working directory to that specified by argument.

Return value is:

0: Success

1: Cannot create directory

2: Disk invalid

44 Commands

Char

Arguments:

Arguments:

Type: string real

Description: Input string Character position

Compulsory: Yes Yes

Default:

Return type: string

Returns a string consisting of the single character in arg1 located at index given in arg2.
The first character has index 0. An empty string is returned if the index is out of range.

Example

Show Char('Hello World!', 4)

displays result:

Char('Hello World!', 4) = 'o'

ChooseDir

Arguments:

Type string string string

Description Starting directory Dialog box caption Message

Compulsory No No No

Default Current directory 'Choose Directory' 'Double-click directory to select'

Return type:string

Opens a dialog box showing a directory tree. Returns path selected by user or an empty
string if cancelled. Initial directory shown specified in argument1.

CloseEchoFile

No arguments

Closes the file associated with the Echo command. For more information, see
OpenEchoFile

CollectionName

Arguments:

Type: string

Description: Group name

Compulsory: No

Default: Current group

Return type: string

Returns the collection name of the group specified in the argument or current group if no
argument given.

Collections were developed for collecting data groups created by multiple runs from
version 1. From version 1.5, multiple run data is organised differently using “multi-
division” vectors and consequently collections are largely obsolete. The collection
functions and commands are still available but may not be supported in future versions. The
plot and curve commands no longer support collections.

 Commands 45

ComposeDigital

Type string real array string array

Description Bus name Index range Options

Compulsory Yes No No

Default See notes

ComposeDigital builds a new vector from a binary weighted combination of digital vectors.
It is intended to be used to plot or analyse digital bus signals. The simulator outputs bus
signals as individual vectors. To plot a bus signal as a single value - either in numeric or
analog form - these individual vectors must be combined as one to create a single value.

Note that ComposeDigital can only process purely digital signals. These are expected to
have one of three values namely 0, 1 and 0.5 to represent an invalid or unknown state.

Argument 1

Signal root name. The function expects a range of vectors to be available of the form
busname#n. busname is specified in argument 1 while the range of values for n is specified
in argument 2.

Argument 2

Index range. The function processes vectors from busname#idx_start to busname#idx_end.
idx_start and idx_end are specified by this argument as a two

dimensional array. For example if arg 1 is ‘BUS’ and arg 2 is [0,3], the function will
process vectors:

BUS1#0

BUS1#1

BUS1#2

BUS1#3

as long all 4 vectors exist. If one or more vectors do not exist the first contiguous set of
vectors will be used within the indexes specified. So if BUS1#0 didn’t exist, the function
would use BUS1#1 to BUS1#3. If BUS1#2 didn’t exist, it would use just BUS1#0 and
BUS1#1.

Note that the index may not be larger than 31.

Argument 3

1 or 2 element string array. Values may be any combination of ‘holdInvalid’ and ‘scale’.

‘holdInvalid’ determines how invalid states in the input are handled. If the ‘holdInvalid’
option is specified, they are treated as if they are not present and the previous valid value is
used instead. If omitted, invalid states force an output that alternates between -1 or -2. This
is to allow consecutive invalid states to be distinguished. For example, suppose there are 4
bits with one bit invalid. If one of the valid bits changes, the end result will still be invalid,
but it sometimes desirable to know that the overall state has changed. So, in this case the
first invalid state will show as a -1 and the second invalid state will be -2. In any following
invalid state, the result will be -1 and so on.

scale’ forces the output to be scaled by the value 2-(udxend - idxstart+1)

Return Value

The return value is a real vector that is the binary weighted sum of the vectors defined by
arg 1 and arg 2 but treating invalid values (=0.5) as described above. So, in the example
above, the result will be:

BUS1#0 + BUS1#1 x 2 + BUS1#2 x 4 + BUS1#3 x 8

46 Commands

CopyURL

Type string string string

Description From URL file To URL file options

Compulsory Yes Yes No

Default progress

Return Type: String array

Copies a file specified by a URL from one location to another. The URL may specify
HTTP addresses (prefix ‘http://’), FTP addresses (prefix ‘ftp://’) and local file system
addresses (prefix ‘file:/’).

Argument 1

URL of source file.

Argument 2

URL of destination file

Argument 3

Options: can be ‘progress’ or ‘noprogress’. If set to ‘progress’ (the default) a box will
display with a bar showing the progress of the file transfer. Otherwise no such box will
display.

Return Value

String array of length 2. First element will be one of the values shown in the following
table:

Id Description
UserAbort User aborted operation
TimedOut Connection timed out. This error usually occurs when an Internet connection is

down.
NoError Operation completed successfully
Unexpected1 This is an internal error that should not occur
UnknownProtocol The protocol is unknown. I.e the URL prefix is not implemented. (Only HTTP,

FTP and FILE are implemented)
Unsupported This is an internal error that should not occur
ParseError The URL does not comply with the expected format
IncorrectLogin A username and password are required for this URL
HostNotFound The specified host in the URL could not be found. This error can also occur if

there is no Internet connection.
Unexpected2 This is an internal error that should not occur
MkdirError Could not create target directory
RemoveError This is an internal error that should not occur
RenameError This is an internal error that should not occur
GetError An error occurred while fetching a file
PutError An error occurred while storing a file
FileNotExist File doesn’t exist
PermissionDenied You do not have sufficient privilege to perform the operation
Unknown Error This is an internal error that should not occur

The second element of the returned string gives a descriptive message providing more
information about the cause of failure.

cos

Arguments:

Type: real/complex array

Description: vector

Compulsory: Yes

 Commands 47

Default:

Return type: real/complex array

Return cosine of argument. Result is in radians.

cos_deg

Type real/complex array

Description vector

Compulsory Yes

Default

Return type: real/complex array

Return cosine of argument. Result is in degrees.

CreateShortcut

Type string string string

Description Path of object Path of link file Description

Compulsory Yes Yes Yes

Default

Return type: string

This function is only available on the Windows platform.

Create a ‘shortcut’ to a file or directory.

Argument 1

Path of file or directory which shortcut will point to

Argument 2

Path of shortcut itself.

Argument 3

Description of shortcut

Return Value

‘Success’ or ‘Fail’

Date

Type string

Description format

Compulsory No

Default ‘locale’

Return type: string

Returns the current date in the format specified.

Argument 1

May be ‘iso’ or ‘locale’. When set to ‘locale’ the date is returned in a format specified by
system settings. When set to ‘iso’ the date is returned in a format complying with ISO8601
which is YYYY-MM-DD where YYYY is the year, MM is the month of the year (between
01 and 12), and DD is the day of the month between 01 and 31.

48 Commands

dB

Arguments:

Type: real/complex array

Description: vector

Compulsory: Yes

Default:

Return type: real/complex array

Returns 20*log10(mag(argument))

DefineCurveDialog

Arguments:

Type: string array

Description: initial values

Compulsory: Yes

Default:

Return type: string array

Opens the following dialog box to define a curve for plotting

The argument is a string array of length 25 which defines how the various controls are
initialised. This array has the same format for EditAxisDialog. Not all the elements are
relevant to this function. The following table describes the elements that are used.

Index Purpose Notes Default
0 Axis Type Setting of "Axis Type" group in "Axis/Graph Options

sheet". Possible values:

'auto' "Auto Select"
'selected' "Use Selected"
'axis' "Use New Y-Axis"
'grid' "Use New Grid"
'digital' "Digital"

No default. Value must be
specified.

1 Graph Type Setting of "Graph Options" group in "Axis/Graph
Options sheet". Possible values:

'add' "Add To Selected"
'newsheet' "New Graph Sheet"
'newwindow' "New Graph Window"

No default. Value must be
specified.

2 Axis name Not used with this function
3 Persistence Not used with this function
4 Graph name Not used with this function
5 Curve label "Curve label" control in "Define Curve" sheet <<empty>>

 Commands 49

6 Analysis Not used with this function
7 Plot on

completion
Not used with this function

8 reserved for
future use

Not used with this function

9 reserved for
future use

Not used with this function

10 X axis
graduation

Setting of Log|Lin|Auto for X Axis in "Axis Scales"
sheet.
Possible values:

'lin' "Lin"
'log' "Log"
'auto' "Auto"

'auto'

11 X axis scale
options

Setting of scale options for X Axis in "Axis Scales"
sheet.
Possible values:

'nochange' "No Change"
'auto' "Auto scale"
'defined' "Defined"

'auto'

12 Y axis
graduation

Setting of Log|Lin|Auto for Y Axis in "Axis Scales"
sheet. Possible values as for X axis.

'auto'

13 Y axis scale
options

Setting of scale options for X Axis in "Axis Scales"
sheet. Possible values as for X axis.

'auto'

14 X axis min
limit

Min value for X Axis in "Axis Scales" sheet. Must be
specified as a string.

0

15 X axis max
limit

Max value for X Axis in "Axis Scales" sheet. Must be
specified as a string.

1

16 Y axis min
limit

Min value for Y Axis in "Axis Scales" sheet. Must be
specified as a string.

0

17 Y axis max
limit

Max value for Y Axis in "Axis Scales" sheet. Must be
specified as a string.

1

18 X axis label "Axis Label" setting for "X-Axis" group in "Axis
Labels" sheet

<<empty>>

19 X axis units "Axis Units" setting for "X-Axis" group in "Axis
Labels" sheet

<<empty>>

20 Y axis label "Axis Label" setting for "Y-Axis" group in "Axis
Labels" sheet

<<empty>>

21 Y axis units "Axis Units" setting for "Y-Axis" group in "Axis
Labels" sheet

<<empty>>

22 Y-expression Contents of Y expression edit box <<empty>>
23 X-expression Contents of X expression edit box, if enabled <<empty>>
24 Vector filter Subcircuit filter selection in "Available Vectors"

group. Possible values

'all' "All"
'top' "Top level"
sub circuit name. Select a subcircuit name.

The available vectors list box is initialised with the names of vectors in the current group.

The function returns a string array with the same format as the argument. If the user selects
"Cancel" the function returns an empty vector.

DescendDirectories

Type string

Description Directory

Compulsory Yes

Default

 Return type: string array

Returns all directories under the specified directory. DescendDirectories recurses through
all sub-directories including those pointed to by symbolic links. DescendDirectories only
returns directory names. It does not return files. Use the ListDirectory function to return the
files in a directory.

50 Commands

diff

Arguments:

Type: real array

Description: vector

Compulsory: Yes

Default:

Return type: real array

Returns the derivative of the argument with respect to its reference. If the argument has no
reference the function returns the derivative with respect to the argument's index - in effect
a vector containing the difference between successive values in the argument. For details on
references see “Vector References”.

 EditAxisDialog

Arguments:

Type: string array

Description: initial settings

Compulsory: Yes

Default:

Return type: string array

Opens the following dialog box used to edit graph axes

The argument is a string array of length 25 which defines how the various controls are
initialised. This array has the same format for DefineCurveDialog. Not all the elements are
relevant to this function. The following table describes the elements that are used.

0 Axis Type Not used with this function
1 Graph Type Not used with this function
2 Axis name Not used with this function
3 Persistence Not used with this function
4 Graph name Not used with this function
5 Curve label Not used with this function
6 Analysis Not used with this function
7 Plot on

completion
Not used with this function

8 reserved for
future use

Not used with this function

9 reserved for
future use

Not used with this function

10 X axis
graduation

Not used with this function

 Commands 51

11 X axis scale
options

Setting of scale options for X Axis in "Axis
Scales" sheet.
Possible values:

'nochange' "No Change"
'auto' "Auto scale"
'defined' "Defined"

'auto'

12 Y axis
graduation

Not used with this function

13 Y axis scale
options

Setting of scale options for X Axis in "Axis
Scales" sheet. Possible values as for X axis.

'auto'

14 X axis min
limit

Min value for X Axis in "Axis Scales" sheet.
Must be specified as a string.

0

15 X axis max
limit

Max value for X Axis in "Axis Scales" sheet.
Must be specified as a string.

1

16 Y axis min
limit

Min value for Y Axis in "Axis Scales" sheet.
Must be specified as a string.

0

17 Y axis max
limit

Max value for Y Axis in "Axis Scales" sheet.
Must be specified as a string.

1

18 X axis label "Axis Label" setting for "X-Axis" group in
"Axis Labels" sheet

<<empty>>

19 X axis units "Axis Units" setting for "X-Axis" group in
"Axis Labels" sheet

<<empty>>

20 Y axis label "Axis Label" setting for "Y-Axis" group in
"Axis Labels" sheet

<<empty>>

21 Y axis units "Axis Units" setting for "Y-Axis" group in
"Axis Labels" sheet

<<empty>>

22 Y-expression Not used with this function
23 X-expression Not used with this function
24 Vector filter Not used with this function

The function returns a string array with the same format as the argument. If the user selects
"Cancel" the function returns an empty vector.

EditCrosshairDimensionDialog

Type string array string array string array

Description Property names Property values Property types

Compulsory Yes Yes No

Default

Return type:string array

Opens a dialog intended for editing the characteristics of cursor crosshair dimensions.

The Properties sheet behaves in the same way as the EditObjectPropertiesDialog and is
initialised by the function’s arguments. The Edit sheet allows the edit and display of certain
properties as defined in the following table:

Property Name Affects Control:

Label1 Label 1
Label2 Label 2
Label3 Label 3
Style Contents of Style box. One of six values:

Auto: Automatic, Show
Difference

Internal Internal, Show Difference

External External, Show Difference

P2P1 Show Absolute

P2P1Auto Automatic, Show Difference, Show Absolute

None No controls selected
Font Font. String defining font specification

If any of the controls in the Edit sheet are changed, the corresponding property values in the
Properties sheet will reflect those changes and vice-versa.

52 Commands

EditCurveMarkerDialog

Type string array string array string array

Description Property names Property values Property types

Compulsory Yes Yes No

Default

Return type:string array

Opens a dialog intended for editing the characteristics of curve markers.

The Properties sheet behaves in the same way as the EditObjectPropertiesDialog and is
initialised by the functions arguments. The Edit sheet allows the edit and display of certain
properties as defined in the following table:

Property Name Affects Control:
Label Label
LabelJustification Text Alignment box. One of these values:

-1 Automatic
0 Left-Bottom
1 Centre-Bottom
2 Right-Bottom
3 Left-Middle
4 Centre-Middle
5 Right-Middle
6 Left-Top
7 Centre-Top
8 Right-Top

Font Font. String defining font specification

If any of the controls in the Edit sheet are changed, the corresponding property values in the
Properties sheet will reflect those changes and vice-versa.

EditDeviceDialog

Arguments:

Type: string array string array string array string array

Description: options/initial
settings

devices parameter names parameter values

Compulsory: Yes Yes No No

Default: <<empty>> <<empty>>

Return type: string array

Opens the following dialog box used to select a device and optionally specify its
parameters.

Argument 1

Defines options and initial settings as follows:

0 Text entered in edit control above list box. If the text item is
also present in the device list (argument 2), then that item will
be selected.

1 Ignored unless element 1 is empty. Integer (entered in string
form) which defines selected device.

2 Dialog box caption. Default if omitted: "Select Device"

 Commands 53

3 Message at the top of the dialog box. . Default if omitted:
"Select Device"

Argument 2

String array defining the list of devices.

Argument 3

String array defining list of parameter names. See argument 4.

Argument 4

String array defining list of parameter values. If arguments 3 and 4 are supplied the
"Parameters..." button will be visible. This button opens another dialog box that provides
the facility to edit these parameters' values.

Return value

The function returns a string array in the following form

0 Entry in the text edit box.
1 Index into device list (argument 2) of device in text edit box. If

this device is not in the list, -1 will be returned.
2 Number of parameter values.
3 onwards The values of the parameters in the order they were passed.

If the user selects "Cancel" the function returns an empty vector.

EditFreeTextDialog

Type string array string array string array

Description Property names Property values Property types

Compulsory Yes Yes No

Default

Return type: string array

This function is almost identical to the EditCurveMarkerDialog functions except for some
changes to the aesthetics of the dialog box.

EditGraphTextBoxDialog

Type string array string array string array

Description Property names Property values Property types

Compulsory Yes Yes No

Default

 Return type: string array

Opens a dialog intended for editing the characteristics of text box objects for graphs.

The Properties sheet behaves in the same way as EditObjectPropertiesDialog and is initialised
by the function’s arguments. The Edit sheet shown above allows the edit and display of
certain properties as defined in the following table:

Property Name Affects Control:
Label Label
Colour Background Colour. An integer defining the RGB value
Font Font. String defining font specification

If any of the controls in the Edit sheet are changed, the corresponding property values in the
Properties sheet will reflect those changes and vice-versa.

EditLegendBoxDialog

Type string array string array string array

Description Property names Property values Property types

Compulsory Yes Yes No

54 Commands

Default

Return type: string array

This function is virtually identical to EditGraphTextBoxDialog above except for a different
caption.

EditSelect

Arguments:

Type: string string string

Description: initial edit control
entries

labels dialog box caption

Compulsory: No No No

Default: <<empty>> <<empty>> <<empty>>

Return type: string array

Opens a dialog box containing up to 6 edit controls allowing the user to enter text values.
The number of edit controls is the smaller of the lengths of arguments 1 and 2. If no
arguments are given, 6 controls will be displayed with blank labels. Function returns string
vectors containing user entries for each control. If cancel is selected, a single empty string
is returned.

Example

The following dialog box will be displayed on a call to

EditSelect(['Init 1','Init 2'],['Label 1','Label 2'],'Enter Text')

See Also

BoolSelect

RadioSelect

ValueDialog

EnterTextDialog

Arguments:

Type: string array

Description: initial text and box
caption

Compulsory: Yes

Default:

Return type: string array

Opens the following, allowing the user to enter lines of text.

 Commands 55

The argument specifies the initial text and the dialog box's caption as follows:

0 Initial text
1 Dialog box caption

The function returns the text entered by the user.

Execute

Type string any May have up to 8 args in total

Description Script name Script argument 1 Script args 2 - 7

Compulsory Yes No No

Default

Return type: Depends on called script

Function calls the script defined in arg 1 and passes it the arguments supplied in arg 2- 8.
The function's returned value is the script's first argument passed by reference.

The Execute function is used internally to implement user functions that are registered with
the RegisterUserFunction command.

ExistDir

Arguments:

Type: string

Description: directory name

Compulsory: Yes

Default:

Return type: real

Function returns a real scalar with one of three values:

0 Directory does not exist
1 Directory exists but with no write privilege
2 Directory exists with write privilege

ExistFunction

Type string string

Description Function name Function type

Compulsory Yes No

Default 'global'

 Return type: real

Returns TRUE or FALSE depending on whether specified function exists.

56 Commands

Argument 1

Function name.

Argument 2

Either ‘global’ or ‘script’. If ‘global’, arg 1 is assumed to be the name of a built in function.
If ‘script’ arg 1 is assumed to be a function defined as a script and installed using the
RegisterUserFunction.

User defined compiled functions linked in as a DLL/shared library are treated as ‘global’.

ExistVec

Arguments:

Type: string string

Description: vector name options

Compulsory: Yes No

Default:

Return type: real

Returns TRUE (1) if the specified vector exists otherwise returns FALSE (0). If the second
argument is 'GlobalLocal', only the global and local groups are searched for the vector
otherwise the current group is also searched. See Accessing Simulation Data for details on
groups.

EXP

Arguments:

Type: real/complex array

Description: vector

Compulsory: Yes

Default:

Return type: real/complex array

Returns e raised to the power of argument. If the argument is greater than 709.016, an
overflow error occurs.

FFT

Arguments:

Type: real array string

Description: vector window function

Compulsory: Yes No

Default: 'Hanning'

Return type: complex array

Performs a Fast Fourier Transform on supplied vector. The number of points used is the
next binary power higher than the length of argument1. Excess points are zero-filled.
Window used may be 'Hanning' (default) or 'None'.

User's should note that using this function applied to raw transient analysis data will not
produce meaningful results as the values are unevenly spaced. If you apply this function to
simulation data, you must either specify that the simulator outputs at fixed intervals (select
the Output at interval option in the Pulsonix Schematics Simulation Parameters... dialog

 Commands 57

box) or you must interpolate the results using the Interp function (The FFT plotting menu
items run a script which interpolate the data if it detects that the results are unevenly
spaced. Use of these menus does not require special consideration by the user.)

The fft function described here never directly interpolates. Interpolation may be provided
as a separate function (Interp) if required.

Note that much better results are obtained if the original data is genuinely evenly spaced
and not interpolated. If the fixed interval option is specified for transient analysis, the
simulator will actually perform an analysis at the evenly spaced points and good FFT
results can be obtained. This is not the case with most other SPICE products which
interpolate. Interpolation, introduces errors into FFT results especially at frequencies far
removed from fundamental components.

Further information on FFT's can be found in the Pulsonix Spice User's manual.

Field

Type real real real

Description Value first bit second bit

Compulsory Yes Yes Yes

Default

Return type: real

Function provides bit access to integers. Returns the decimal value of a binary number
composed from the binary representation of argument 1 between the bit numbers defined in
arguments 2 and 3. E.g.:

Field(100, 1, 3) = 2

100 (decimal) = 1100100 (binary)

bits 1 to 3 (from right i.e. least significant) = 010 (binary) = 2

Field is useful for cracking the individual bits used for symbol attribute flags.

FindModel

Arguments:

Type: string string

Description: model name model type (e.g.
'Q' for BJT, 'X' for
subcircuit)

Compulsory: Yes Yes

Default:

Return type: string array

Returns string array of length 2 holding the file name and line number of the definition of
the specified model.

FIR

Arguments:

Type: real array real array real array

Description: vector to be
filtered

filter coefficients initial conditions

Compulsory: Yes Yes No

Default: All zero

Return type: real array

58 Commands

Performs "Finite Impulse Response" digital filtering on supplied vector. This function
performs the operation:

y
n
 = x

n
 . c

0
 + x

n-1
 . c

1
 + x

n-2
 . c

2
 ...

Where:

x is the input vector (argument 1)

c is the coefficient vector (argument 2)

y is the result (returned value)

The third argument provide the "history" of x i.e. x
-1
, x

-2
 etc. as required.

The operation of this function (and also the IIR function) is simple but its application can
be the subject of several volumes! Below is the simple case of a four sample rolling
average. In principle an almost unlimited range of FIR filtering operations may be
performed using this function. Any text on Digital Signal Processing will provide further
details.

User's should note that using this function applied to raw transient analysis data will not
produce meaningful results as the values are unevenly spaced. If you apply this function to
simulation data, you must either specify that the simulator outputs at fixed intervals (select
the Output at interval option in the Pulsonix Schematics Simulator Parameters... dialog
box) or you must interpolate the results using the Interp function.

Example

Suppose a vector VOUT exist in the current group (simulation results). The following will
plot VOUT with a 4 sample rolling average applied

Plot FIR(vout, [0.25, 0.25, 0.25, 0.25])

Alternatively, the following does the same

Plot FIR(vout, 0.25*unitvec(4))

Floor

Arguments:

Type: real

Description: scalar

Compulsory: Yes

Default:

Return type: real

Returns the argument truncated to the next lowest integer. Examples

 Floor(3.45) = 3

Floor(7.89) = 7

Floor(-3.45) = -4

FormatNumber

Arguments:

Type: real real string

Description: number significant digits format

Compulsory: Yes Yes No

Default: 'eng'

 Commands 59

Return type: real

Formats a real value and returns a string representation of it. Argument 2 is the number of
significant digits and argument 3 specify what format to use. The options are:

'eng' (default if omitted). Formats the number using
engineering units

'noeng' Normal format. Will use 'E' if necessary
'%' Formats as a percentage

Fourier

Type real array real real real array

Description data Fundamental frequency Number of frequency terms options

Compulsory Yes Yes Yes No

Default

Return type: complex array

Calculates the fourier spectrum of the data in argument 1. The function uses the
‘Continuous Fourier’ technique which numerically integrates the Fourier integral. Because
this technique does not require the input data to be sampled at evenly spaced points, it
doesn't suffer from frequency aliasing. This is the main drawback of the more commonly
used FFT (Fast Fourier Transform) algorithm. However, the Continuous Fourier algorithm
is much slower then the FFT, sometimes dramatically so.

Argument 1

The input data. This is expected to possess a reference i.e. x-values

Argument 2

Specifies the fundamental frequency. All terms calculated will be an integral multiple of
this.

Argument 3

Specifies the number of frequency terms to be calculated.

Argument 4

This is optional and can be a 1 or 2 element array. The first element is the first frequency to
be calculated expressed as a multiple of the fundamental. The default value is 0 i.e. the DC
term is calculated first. The second element is the integration order used and may be 1 or 2.

Return Value

The result of the calculation and will be a complex array with length equal to argument 3.

FourierOptionsDialog

Type string array real array

Description initial values sample vector

Compulsory Yes No

Default

Return type: string array

Same as DefineFourierDialog except that only the Fourier sheet is displayed. The remaining
tabbed sheets are hidden.

60 Commands

FourierWindow

Type real string

Description Input vector window type

Compulsory Yes No

Default ‘hanning’

Return type: real array

Returns the input vector multiplied by one of a selection of 4 window functions. This is
intended to be used with a Fourier transform algorithm.

Argument 1

Input vector

Argument 2

Window type. One of:

'hanning'

'hamming'

'blackman'

'rectangular'

FullPath

Arguments:

Type: string string

Description: relative path name reference directory

Compulsory: Yes No

Default: Current working
directory

Return type: real

Returns the full path name of the specified relative path and reference directory.

Examples

FullPath('amplifier.net', 'c:\simulation\circuits') =

c:\simulation\circuits\amplifier.net

FullPath('..\amplifier.net', 'c:\simulation\circuits') =

c:\simulation\amplifier.net

See also

RelativePath

SplitPath

GenPrintDialog

Arguments:

Type: string array

Description: initial settings

Compulsory: Yes

Default:

 Commands 61

Return type: string array

Opens the following dialog box used to define print settings

The arguments is a string array of length 13 and defines the initial settings of the dialog box
as follows:

0 'area' "Fit Area"
'grid' "Fixed Grid"

1 Not used. Set to ‘1’
2 Not used. Set to ‘’
3 Graph magnification (entered as a string)
4 Graph caption
5 Orientation 'landscape' or 'portrait'
6 Layout: use '1' meaning Graph only
7 Left margin. The value is entered and returned in units of 0.1mm but will be

displayed according to system regional settings. Must be entered as a string
8 Top margin. Comments as for left margin.
9 Right margin. Comments as for left margin.
10 Bottom margin. Comments as for left margin.
11 Major grid checked:

'on' Checked
'off' Not checked

12 Minor grid checked:
'on' Checked
'off' Not checked

The function returns a string array with the same format as the argument and assigned with
the user's settings. If the user selects "Cancel" the function returns an empty vector.

GetAllCurves

No Arguments

Return type: string array

Returns an array listing id's for all curves on currently selected graph. All curves are
referred to by a unique value that is the "id". Some functions and command require a curve
id as an argument.

GetAllYAxes

No Arguments

Return type: string array

Returns an array listing all y axis id's for currently selected graph. All graph axes have a
unique "id" which may be used with some other commands and functions.

62 Commands

GetAnalysisInfo

Type string

Description Options

Compulsory No

Default

Return type: string array

Returns the parameters of the most recent analysis performed by the simulator. The
parameters are returned in the form of a string array. If argument 1 is set to 'name' the
function will return the names of each parameter.

The following sample shows how to obtain a the stop time of a transient analysis:

let stopIdx = Search(GetAnalysisInfo('name'), 'tstop')

Let stopTime = Val(info[stopIdx])

The following table shows the parameter names currently available for each analysis type:

Analysis Type Parameter Names
Transient ANALYSISNAME, GROUPNAME, TSTART, TSTOP, TSTEP, TMAX, UIC,

DELTA, RTNSTART, RTNSTOP, RTNSTEP, RTNENABLED, FAST
AC ANALYSISNAME, GROUPNAME, PARAM, MODEL, TEMP, FREQ, MONTE,

REPEAT, DEVICE, MODE, START, STOP, STEP, NUMSTEPS, GRAD, SINGLE,
F

DC ANALYSISNAME, GROUPNAME, PARAM, MODEL, TEMP, FREQ, MONTE,
REPEAT, DEVICE, MODE, START, STOP, STEP, NUMSTEPS, GRAD, SINGLE

Noise ANALYSISNAME, GROUPNAME, PARAM, MODEL, TEMP, FREQ, MONTE,
REPEAT, DEVICE, MODE, START, STOP, STEP, NUMSTEPS, GRAD, SINGLE,
V, VN, INSRC, PTSPERSUM, F

Transfer Function ANALYSISNAME, GROUPNAME, PARAM, MODEL, TEMP, FREQ, MONTE,
REPEAT, DEVICE, MODE, START, STOP, STEP, NUMSTEPS, GRAD, SINGLE,
V, VN, I, INSRC, F, IMODE

Sensitivity ANALYSISNAME, GROUPNAME, POSNAME, NEGNAME, I, GRAD, START,
STOP, NUMSTEPS

Pole-zero ANALYSISNAME, GROUPNAME, NODEINAME, NODEGNAME,
NODEJNAME, NODEKNAME, VOLCUR, POLZER

Operating point ANALYSISNAME, GROUPNAME

GetAxisCurves

Arguments:

Type: string

Description: Y axis id

Compulsory: Yes

Default:

Return type: string array

Returns an array listing all curve id's for specified y-axis. All curves are referred to by a
unique value that is the "id". Some functions and command require a curve id as an
argument.

GetAxisLimits

Arguments:

Type: string

Description: Axis id

Compulsory: Yes

Default:

 Commands 63

Return type: string array

Returns array of length 3 providing limits info for specified axis as follows:

0 Minimum limit
1 Maximum limit
2 Axis scale type - 0 = linear, 1 = logarithmic
3 Fixed or auto. 0 = fixed, 1 = auto

GetAxisType

Arguments:

Type: string

Description: Axis id

Compulsory: Yes

Default:

Return type: string array

Returns string specifying type of axis. Possible values are:

'X' X-axis
'Digital' A Digital Y-axis. (Created with "Curve

/dig")
'Main' Main Y-axis (axes at bottom of graph)
'Grid' Grid Y-axis (axes stacked on top of main)
'NotExist' Axis does not exist

GetAxisUnits

Arguments:

Type: string

Description: Axis id

Compulsory: Yes

Default:

Return type: string array

Returns physical units of axis. See Units function for list of possible values.

GetColours

No arguments

Return type: string array

Returns the names of all objects in the program whose colour may be edited. The function
is usually used in conjunction the GetColourSpec function, the SelectColourDialog
function and the EditColour command.

GetColourSpec

Type string
Description Colour name
Compulsory Yes
Default

Return type: string

Returns the current colour specification for the object whose name is passed to argument 1.
Valid object names can be obtained from the GetColours function. The return value may be
used to initialise the SelectColourDialog which allows the user to define a new colour.

64 Commands

The return value represents the colour of the object as a single integer which can be
decoded into its RGB components. However, this value should not be used directly as its
format may change in future versions of the product.

If the object name passed is not recognised the function will return the representation for
the colour black.

GetConfigLoc

No arguments

Return type: string array

Returns the location of the application's configuration settings. In versions prior to version
2, this would be in one of the following forms:REG;registry_root_pathname

OR

PATH;inifile_pathname

If the first form is returned, the settings are stored in the registry the path being
HKEY_CURRENT_USER\registry_root_pathname

If the second form is returned the settings are stored in a file with full path equal to
inifile_pathname.

From version 2, the registry is no longer used for storing settings, so only the second of the
two forms will ever be returned.

The return value from GetConfigLoc can be used directly as the value of the
/config_location switch at the simulator (SIM.EXE) command line. See the “Running the
Simulator” chapter in the Simulator Reference Manual for more details.

GetConvergenceInfo

No arguments

Return type: string array

Returns a string array providing convergence information about the most recent run. Each
element of the array is a list of values separated by semi-colons. The output may be pasted
into a spreadsheet program that has been set up to interpret a semicolon as a column
separator. The first element of the array lists the names for each column and therefore
provides a heading. The following headings are currently in use:

type Node or Device
name Name of node or device that failed to converge
count Number of times node/device failed to converge during run
time (first step) Time of most recent occurrence of a ‘first step’ failure.
required tol Required tolerance for most recent ‘first step’ failure
actual tol Tolerance actually achieved for most recent ‘first step’ failure
absolute val Absolute value for most recent ‘first step’ failure
time (cut back step) Time of most recent occurrence of a ‘cut back step’ failure.
required tol Required tolerance for most recent ‘cut back step’ failure
actual tol Tolerance actually achieved for most recent ‘cut back step’ failure
absolute val Absolute value for most recent ‘cut back step’ failure
final? Node or device failed on the final step that caused the simulation to abort
top analysis Main analysis mode (Tran, DC etc.)
current analysis Current analysis. Either the same as ‘top analysis’ or Op
op mode Method being used for operating point. (PTA, JI2, GMIN or SOURCE)

A first step failure is a failure that occurred at the first attempt at a time step after a
previously successful step. If a time point fails, the time step is cut back and further
iterations are made. Failures on steps that have been cut back are referred to in the above
table as cut back steps. Quite often the nodes or devices that fail on a cut back step are quite
different from the nodes or devices that fail on a first step. The root cause of a convergence
failure will usually be at the nodes or devices that fail on a first step.

 Commands 65

It is quite difficult to interpret the information provided by this function. The ‘where’ script
performs a simple analysis and sometimes displays the nodes or devices most likely to be
the cause.

GetCurDir

No Arguments

Return type: string

Returns current working directory.

GetCurrentGraph

No arguments

Return type: string

Returns id of the currently selected graph. Returns '-1' if no graphs are open. The id can be
used in a number of functions that return information about graphs or graph objects
generally.

GetCursorCurve

No arguments

Return type: string

Returns a string array of length 3 providing information on the curve attached to the
measurement cursor. Returns an empty vector if cursors not enabled.

Index Description
0 Curve id
1 Source group name. This is the group that was current when the curve was created.
2 Division index if curve is grouped. (E.g. for Monte Carlo)

GetCurveAxis

Arguments:

Type: string

Description: curve id

Compulsory: Yes

Default:

Return type: string

GetCurveName

Arguments:

Type: string

Description: curve id

Compulsory: Yes

Default:

Return type: string

Returns name of specified curve

66 Commands

GetCurves

No Arguments

Return type: string array

Returns an array of curve names (as displayed on the graph legend) for the current graph.

GetCurveVector

Type real real string

Description curve id Division index Obsolete - no longer used

Compulsory Yes No No

Default Return all divisions

Return type: real array

Returns the data for a curve.

For a single curve (i.e. not a group of curves as created from a Monte Carlo plot) only the
first argument is required and this specifies the curve's id.

If the curve id refers to a group of curves created by a multi-step run, then the second
argument may be used to identify a single curve within the group. The data for the
complete curve set is arranged as a Multi Division Vector. The second argument specifies
the division index. If absent the entire vector is returned

Note that the arguments to this function for version 4 and later have changed from earlier
versions.

GetDatumCurve

No arguments

Return type: string array

Returns a string array of length 3 providing information on the curve attached to the
reference cursor.

Index Description
0 Curve id
1 Source group name. This is the group that was current when the curve was created.
2 Division index if curve is grouped. (E.g. for Monte Carlo)

GetDeviceDefinition

Type string string

Description Device name Device type

Compulsory Yes Yes

Default

Return type: string array

Searches for the specified device model in the global library and returns the text of the
model definition. If the device is defined using a .MODEL control, the result will have a
single element containing the whole definition. If the device is defined using a subcircuit
then the result will be a string array with a single element for each line in the subcircuit
definition.

Argument 1

The model/subcircuit name. E.g. 'Q2N2222' or 'TL072'

 Commands 67

Argument 2

The type of the device. This may be either the device letter e.g. 'Q' for a BJT, or the model
type name e.g. 'npn'. A list of device letters is given in the Simulator Reference manual in
the “Running the Simulator” chapter.

If the device is a subcircuit, use the letter 'X'.

GetDeviceInfo

Type string string

Description Model name Options

Compulsory Yes No

Default none

Return type: string array

Returns information about the specified simulator device.

Argument 1

Internal device name as returned by the GetModelType or GetInternalDeviceName
function. This is not the same as the type name used in the .MODEL control but a name
that is used internally by the simulator. For example, the internal device name for a LEVEL
1 MOSFET is 'MOS1'.

Optionally the device letter may be specified if arg2 = 'letter'. However, the function will
not return such precise information if this option is used. For example, the LEVEL value
will not be known and so -1 will be returned. Also the minimum and maximum number of
terminals will reflect all devices that use that device letter and not just one specific device.
E.g. the ‘BJT’ device defines the standard SPICE Gummel-Poon transistor which can have
3 or 4 terminals. But the ‘q’ letter can also specify VBIC_Thermal devices which can have
5 terminals.

Argument 2

Options, currently only one. If this is set to 'letter', a single letter should be specified for
argument 1. This is the device letter as used in the netlist, e.g. 'Q' for a BJT, 'R' for a
resistor. See notes above concerning specifying using the device letter.

Return Value

Result is a 6 element array. Each element is defined as follows:

Index Description
0 Model type name for negative polarity device. E.g. 'npn', 'nmos' etc.
1 Model type name for positive polarity device E.g. 'pnp', 'pmos' etc. Empty if device has only a single

polarity
2 Device letter. E.g. 'Q' for a BJT
3 Maximum number of terminals.
4 Minimum number of terminals. This is usually the same as the maximum number of terminals,

except for BJTs whose substrate terminal is optional.
5 Value required for LEVEL parameter. 0 means that this is the default device when no LEVEL

parameter is specified. -1 will be returned if the 'letter' option is specified.
6 Semi-colon delimited list of valid .MODEL control model name values. E.g. ‘npn’, ‘pnp’ and ‘lpnp’

are returned for the ‘BJT’ device.

GetDeviceParameterName

Type string real string array

Description device type level Options

Compulsory Yes No No

Default -1

Return type: string array

68 Commands

Returns string array containing all device parameter names for the specified simulator
model type.

Argument 1

Device type specified using its SPICE letter e.g. 'Q' for a BJT, 'M' for a MOSFET etc.

Argument 2

Model level if relevant. If omitted or set to -1, the default level for that type of device will
be used.

Argument 3

String array of length up to 2. May contain one or both of ‘useInternalName’ and
‘readback’. If ‘useInternalName’, then argument 1 must specify the device’s internal name.
This is returned by GetInternalDeviceName. Argument 2 is ignored in this case.

If ‘readback’ is specified, the function returns names of ‘read back’ parameters. Read back
parameters aren’t writeable but return information about a device’s operating
characteristics. For example, most MOS devices have ‘vdsat’ read back parameter that
returns the saturation voltage. This function only returns the names of read back
parameters. To find their values, use GetInstanceParamValues.

Return value

String array of length determined by the number of parameters the device has. Each
element contains the name of a single parameter. To find the values for the parameters use
GetInstanceParamValues.

Example

The following:

Show GetDeviceParameterNames('M')

returns:

 0 'L'

 1 'W'

 2 'M'

 3 'AD'

 4 'AS'

 5 'PD'

 6 'PS'

 7 'NRD'

 8 'NRS'

 9 'IC-VDS'

 10 'IC-VGS'

 11 'IC-VBS'

 12 'TEMP'

GetDriveType

Type string

Description path

Compulsory Yes

Default

 Commands 69

Return type: string

Determines the type of drive or file system of the specified path. Returns one of the
following values:

Return value Description
‘local’ Drive or file system present on the local machine
‘remote’ Network drive or file system
‘cdrom’ CD Rom or DVD drive
‘other’ Other file system or drive
‘notexist’ The path doesn’t exist or media not present.
‘unknown’ Drive type or file system could not be determined

GetEnvVar

Arguments:

Type: string

Description: system environment variable name

Compulsory: Yes

Default:

Return type: string

Returns the value of a system environment variable.

GetFile

Arguments:

Type: string real

Description: File specification 0: file must exist,
1:need not exist

Compulsory: Yes No

Default: 0

Return type: string

Opens "Open File" dialog box. Return value is full pathname of file selected by user. If user
cancels operation, function returns an empty string. Argument to function supplies
description of files and default extension. These two items are separated by '\'. E.g.
getfile('Schematic Files\sch') .

This function has now been superseded by the function GetUserFile which is more
flexible.

GetFileCd

Arguments:

Type: string real

Description: File specification 0: file must exist,
1:need not exist

Compulsory: Yes No

Default: 0

Return type: string

Opens "Open File" dialog box. Return value is full pathname of file selected by user.
Current directory is changed to directory holding selected file. If user cancels operation,
function returns an empty string. Argument to function supplies description of files and
default extension. These two items are separated by '\'. E.g. getfilecd('Text Files\txt') .

70 Commands

This function has now been superseded by the function GetUserFile which is more
flexible.

GetFileExtensions

Arguments:

Type: string

Description: file type

Compulsory: Yes

Default:

Return type: string array

Returns a string array containing all valid extensions (without prefixed '.') for the given file
type. The extension returned in the first element is the default. File extensions can be
changed in the general options dialog box (File|Options|General...) and are stored in a
number of option variables. These are listed in the following table.

GetFileExtensions
argument

Used for Option name Default

'Data Data files DataExtension sxdat, dat
'Text' Text files TextExtension txt, net, cir, mod,

ldf, sxscr, lib, lb, cat
'LogicDef' Logic definition

files used with
arbitrary logic block

LogicDefExtension ldf

'Script' Script files ScriptExtension sxscr, txt
'Model' Model files ModelExtension lb, lib, mod, cir
'Catalog' Catalog files CatalogExtension cat

GetFileSave

Arguments:

Arguments:

Type: string

Description: file specification

Compulsory: Yes

Default:

Return type: string

Opens "Save File" dialog box. Return value is full pathname of file selected by user. If user
cancels operation, function returns an empty string. Argument to function supplies
description of files and default extension. These two items are separated by '\'. E.g.
getfile('Text Files\txt') . User will be warned if an existing file is selected.

This function has now been superseded by the function GetUserFile which is more
flexible.

GetFonts

No arguments

Return type: string array

Returns the names of all objects in the program whose font may be edited. The function is
usually used in conjunction the function GetFontSpec, the function SelectFontDialog and
the command EditFont.

 Commands 71

GetFontSpec

Type string

Description Object name

Compulsory Yes

Default

Return type: string

Returns the current font specification for the object whose name is passed to argument 1.
Valid object names can be obtained from the GetFonts function. The return value may be
used to initialise the SelectFontDialog which allows the user to define a new font.

The return value represents the font of the object as a string consisting of a number of
values separated by semi-colons. The values define the font in terms of its type face, size,
style and other characteristics. However, these values should not be used directly as the
format of the string may change in future versions of the product. The return value should
be used only as an argument to functions or commands that accept a font definition. E.g.
The SelectFontDialog function and EditFont command.

If the object name passed is not recognised the function will return the definition for the
default font.

GetGraphObjects

Type string string

Description Object type name Graph id

Compulsory No No

Default

Return type: string array

Returns a list of IDs for the graph objects defined by the optional arguments as follows:

If no arguments are specified, the IDs for all graph objects are returned.

If the first argument is specified, all objects of the defined type will be returned

If both arguments are specified, all objects of the defined type and located on the specified
graph will be returned.

If the type name is invalid, or if the graph id specified in arg 2 is invalid or if there are no
graphs open, the function will return an empty vector.

GetGraphObjPropNames

Type string

Description Graph object ID

Compulsory Yes

Default

Return type: string array

Returns the valid property names for the graph object defined by argument 1

GetGraphObjPropValue

Type string string

Description Graph object ID Property name

Compulsory Yes No

Default Return all values

Return type: string array

Returns property values for the specified object. If argument 2 is present the value of one
particular property will be returned. Otherwise the function will return an array containing

72 Commands

all property values. The order of the values corresponds to the return value of
GetGraphObjPropNames.

(Note the function GetGraphObjPropValues is the same but will only accept one argument)

GetGraphTitle

No Arguments

Return type: string

Returns title of currently selected graph.

GetGroupInfo

Type string

Description group name

Compulsory Yes

Default

Return type: string array

Returns information about a group.

Argument 1

Group name for which information is required. Enter ‘’ to obtain information on the current
group.

Return Value

String array of length 3 as described in the following table:

Index Description
0 Source file. This is the path name for the file that contains the data for the group.

If the groups data is stored in RAM, this element will hold an empty string
1 Group title. For groups created by a simulation (which is to say virtually all

groups) this is obtained from the netlist title
2 Empty - reserved for future use

GetGroupStepParameter

Type string

Description Group name

Compulsory No

Default Current group

Return type: string

Returns the name of the ‘stepped parameter’ of a multi-step run. This value is stored within
the group created for the simulation run's output data. The stepped parameter is a label that
identifies the parameter, device, model parameter or other quantity that is varied during a
multi-step run.

GetGroupStepVals

Type string

Description Group name

Compulsory No

Default Current group

Return type: real array

 Commands 73

Returns the ‘stepped values’ in a multi-step run. These values are stored within the group
created for the simulation run's output data. The stepped values are the values assigned to
the ‘stepped parameter’during a multi-step run.

GetInstanceParamValues

Type string string string

Description Instance name Parameter name Options

Compulsory Yes No No

Default Get all parameters

Return type: string or string array

Returns simulation instance parameter values for the device specified. This function returns
the values used in the most recent simulation. If simulation has been run, or it was aborted
or reset (using Reset command), then this function will return an empty vector.

If argument 3 is set to ‘readback’, this function will return the values for readback
parameters.

Argument 1

Instance name, e.g. Q23, R3 etc. This is the name used in the netlist stripped of its dollar
prefix if applicable.

Argument 2

Name of parameter whose value is required. If this argument is missing or empty, then all
parameters will be returned. The number and order of the parameters in this case will match
the return value of parameter names from the function GetDeviceParameterNames.

Argument 3

If set to ‘readback’ and argument 2 is empty, this function will return the values of all read
back values for the devices. ‘read back’ values are values calculated during a run and give
useful information about a device’s operating conditions. Note that the value returned will
reflect the state of the device at the last simulation point. For example, if a transient run has
just been performed, the values at the final time point will be given. If a small-signal
analysis has been performed, the results will usually reflect the DC operating point
conditions.

Return Value

If argument 2 is provided and valid, will return a single string expressing the value of the
parameter. If arg 2 is missing or empty, a string array will be returned with all parameter
values.

GetInternalDeviceName

Type string array

Description Model details

Compulsory Yes

Default

Return type: string

Finds the simulator's internal device name for a model defined using its model type name
and optionally, level and version.

The internal device name is a unique name used to define a primitive simulator device. For
example, npn and pnp transistors have the internal device name of 'BJT'.

Level 1 MOSFETs have the internal device name of 'MOS1' while nmos level 8 devices are
called 'BSIM3'. Some functions - e.g. GetDeviceInfo - require the internal device name as
an argument.

74 Commands

Argument 1

1 - 3 element string array which describes device.

Index Description
0 Model type name as used in the .MODEL control. E.g. 'nmos', 'npn' etc.
1 Optional. Value of LEVEL parameter. If omitted, default level is assumed
2 Optional. Value of VERSION parameter.

GetLastError

No Arguments

Return type: string

Returns a string with one of three values signifying the status of the most recent command
executed. The three values are:

'OK' Command executed without error
'Error' One or more errors occurred in the most recent command
'Fatal' The most recent command was not recognised or the evaluation of a braced

substitution failed.

The command switches /noerr and /quiet (see Command Line Switches in the Pulsonix
Spice User's manual) can be used to effectively disable non-fatal errors. This function
allows customised action in the event of an error occurring. For example, if a simulation
fails to converge, the run command yields an error. This function can be used to take
appropriate action in these circumstances.

When a fatal error occurs, the command will abort unconditionally and this function returns
'Fatal'.

GetLegendProperties

Arguments:

Type: string string

Description: curve id options

Compulsory: Yes No

Default: 'names'

Return type: string array

Returns either all legend property names or all legend property values for specified curves.
Legend Properties are the text associated with curve names in the graphs "Legend Panel".

If argument 2 = 'values' the function returns legend property values. Otherwise it returns
legend property names.

GetMenuItems

Type string

Description Menu path

Compulsory Yes

Default

Return type: string array

Returns all menu item names in the specified menu.

Argument 1

Specifies the path for the menu as it would be provided to the DefMenu command but
without the menu item name.

 Commands 75

Return Value

Returns a string array listing all the menu item names. E.g.

GetMenuItems('Shell|&File')

returns all the menu items in the command shell’s File menu.

GetModelFiles

No arguments

Return type: string array

Returns a list of currently installed device models.

GetModelName

Type string

Description Instance name

Compulsory Yes

Default

Return type: string

Returns the model name used by an instance. The model name is the name for the
parameter set (e.g. ‘QN2222’) as opposed to ‘model type name’ (e.g. ‘npn’) and ‘internal
device name’ (e.g. ‘BJT’).

Note that all simulator devices use a model even if it is not possible for the device to use a
.MODEL statement. Inductors, for example. are not permitted a .MODEL control but they
nevertheless all refer to an internal model which is always called ‘$Inductor’.

GetModelParameterNames

Type string

Description Internal device name

Compulsory Yes

Default

Return type: string array

Returns the names or default values of all real valued parameters for a device model.

Argument 1

Internal device name. This is returned by GetInternalDeviceName GetModelType

Argument 2 - UNSUPPORTED

If a second argument is supplied set to ‘default’, the function will instead return the default
values used for the device’s parameter names. This doesn’t work correctly for all simulator
devices and so is currently unsupported.

GetModelParameterValues

Type string string

Description Model name Parameter name

Compulsory Yes No

Default All values returned if omitted

76 Commands

Return type: string array

Returns the values of all parameters of the specified model. (Defined by ‘model name’ e.g.
'Q2N2222'). This function reads the values from the simulator and requires that a
simulation has been run or checked. The returned array with arg2 omitted is of the same
size as the array returned by GetModelParameterNames for the same device and the values
and parameter names map directly.

Argument 1

Model name. (Model name is the user name for a model parameter set as defined in the
.MODEL control e.g. 'Q2N2222').

Argument 2

Parameter name. If specified return value will be a single value for the specified parameter.
If omitted, the values for all parameters will be returned.

GetModelType

Type string

Description Model name

Compulsory Yes

Default

Return type: string

Returns internal device name given user model name. The internal device name is a name
used internally by the simulator and is required by some functions.
GetInternalDeviceName. The user model name is the name of a model parameter set
defined using .MODEL. E.g. 'Q2N2222'.

Important: this function only works for models used by the current simulation. That is, you
must run or check a simulation on a netlist that uses the specified model before calling this
function.

Argument 1

User model name. See above.

GetNonDefaultOptions

No arguments

Return type: string array

Returns names of all .OPTION settings in the most recent simulation that were not at their
default value.

GetNumCurves

Arguments:

Type: string

Description: option name

Compulsory: Yes

Default:

Return type: real

Returns the number of curves in curve group. This is applicable to curves plotted for a
Monte Carlo analysis.

 Commands 77

GetOption

Arguments:

Type: string

Description: option name

Compulsory: Yes

Default:

Return type: string

Returns the value of the "Option" of name given as argument. Options are created using the
Set command - see the Pulsonix Spice User's manual for details on Simulation Options.
The GetOption function returns 'FALSE' if the option does not exist and 'TRUE' if it exists
but has no value.

GetPath

Arguments:

Type: string

Description: Item name

Compulsory: Yes

Default:

Return type: real

Returns full path name of one of the following.

Argument value Function

ScriptDir Script directory
StartUpDir Start up directory
StartUpFile Start up script
BiScriptDir Built-in script directory
ExeDir Directory containing executable file.
TempDataDir Temporary simulation data directory
DocsDir File system directory for the "My Documents"

folder

GetPlatformFeatures

No arguments

Return type: string array

Returns information on availability of certain features that are platform dependent.

Return value

Currently a string of length 4 defined as follows

Index Description
0 Is ‘ShellExecute’ function implemented. ‘true’ or ‘false’
1 Obsolete
2 Is ‘VersionStamp’ function implemented. ‘true’ or ‘false’
3 Is context sensitive help implemented. ‘true’ or ‘false’

GetPrinterInfo

No arguments

Return type: string array

Returns array of strings providing system printer names and current application default
printer. The return value for index 0 will always be -1. Format is as follows:

78 Commands

Index Description
0 Number of printers available in system
1 Index of printer that is currently set as default. (This is the default for the application not the

system default printer - see below)
2 onwards List of printer names.

Example

The following is an example of executing the command “Show GetPrinterInfo”

Index GetPrinterInfo()

 0 '4'

 1 '2'

 2 'HP LaserJet 4L to file'

 3 'HP LaserJet 4L'

 4 'Acrobat PDFWriter'

 5 'Acrobat Distiller'

The default index is 2 so this means that 'Acrobat PDFWriter' is currently set as the default
printer. This is the current default for the application and is what will be set when you open
a Print dialog box. When Pulsonix starts, it will be initialised to the system default printer
but changes whenever you select a different printer in any of the printer dialogs.

GetPrintValues

No arguments

Return type: string array

Returns the names of all quantities specified in .PRINT controls in the most recent
simulation run.

GetSelectedCurves

No Arguments

Return type: string array

Returns array of curve id's for selected curves.

GetSelectedGraphAnno

No arguments

Return type: string

Returns the ID for the currently selected graph annotation object. If no object is selected,
the function returns '-1'. If no graphs are open, the function returns an empty vector.

See”Graph Objects” for information on graph annotation objects.

GetSelectedYAxis

No Arguments

Return type: string

Returns id of selected y-axis.

 Commands 79

GetSimConfigLoc

No arguments

Return type:string

Returns the location of the simulator’s configuration information. This function returns its
result in an identical form to the GetConfigLoc function.

GetSimulationInfo

No arguments

Return type:string array

Returns a string array of length 11 providing the following information about the most
recent simulation:

Index Description
0 Netlist path
1 List file path
2 Using data file 'True' or 'False'
3 Name of user specified data file
4 Collection name (obsolete)
5 .OPTIONS line specified at RUN command
6 Analysis line specified at RUN command
7 Reserved for future use
8 Reserved for future use
9 Reserved for future use
10 Reserved for future use

GetSimulationSeeds

No arguments

Return type:real array

Returns the seeds used for the most recent run. If this run was a Monte Carlo analysis, the
return value will be an array of length equal to the number of Monte Carlo steps. Each
element will hold the seed used for the corresponding step.

GetSimulatorOption

Type string

Description Option name

Compulsory Yes

Default

Return type: string

Returns the value of a simulator option as used by the most recent analysis. The argument
may be any one of the option names defined for the .OPTIONS control. E.g.

 GetSimulatorOption('RELTOL')

will return the value of RELTOL for the most recent run. If the option value was not
explicitly specified in a .OPTIONS control, its default value will be returned.

80 Commands

GetSimulatorStats

No arguments

Return type: real array

Returns a 26 element real array providing statistical information about the most recent run.
The meaning of each field is described below:

Index Description

0 Number of event driven outputs

1 Number of event driven ports

2 Number of event driven instances

3 Number of event driven nodes

4 Number of equations (= matrix dimension = total number of nodes including internal nodes)

5 Total number of iterations

6 Number of transient iterations

7 Number of JI2 iterations. (First attempt at DC bias point)

8 Number of GMIN iterations

9 Number of source stepping iterations

10 Number of pseudo transient analysis iterations

11 Number of time points

12 Number of accepted time points

13 Total analysis time

14 Transient analysis time

15 Matrix load time. (The time needed to calculate the device equations)

16 Matrix reorder time.

17 Matrix decomposition time.

18 Matrix solve time

19 Size of state vector

20 Parameter evaluation time

21 Matrix decomposition time (transient only)

22 Matrix solve time (transient only)

23 Circuit temperature

24 Circuit nominal temperature

25 Number of matrix fill-ins

26 Simulator Initialisation time

27 Number of junction GMIN iterations

28 Time to process digital events

29 “Accept” time. This is the time used for processing transient time points after the simulator has

accepted it. This includes the time taken to write out the data.

GetSimulatorStatus

No arguments

Return type: string

Returns the current status of the simulator. May be one of the following values:

Paused Simulator paused

InProgress Simulation in progress. (In practice this cannot happen because there is no method of

calling this function while a simulation is in progress)

ConvergenceFail Last simulation failed because of no convergence

SimErrors Last simulation failed because of a run time error

NetlistErrors Last simulation failed because of a netlist error

Warnings Last simulation completed with warnings

 Commands 81

Complete Last simulation successful

None No simulation has been run

GetSoaResults

No arguments

Return type: string

Returns the SOA (Safe Operating Area) results for the most recent simulation.

Return Value

Returns an array of strings, each one describing a single SOA failure. Each string is a semi-
colon delimited list with fields defined below.

Field Description

0 SOA Label

1 Start of failure

2 End of failure

3 under’ or ‘over’. Defines whether the test fell below a minimum limit or exceeded a
maximum limit.

4 Value of limit that was violated

GetSystemInfo

No arguments

Return type: string array

Returns information about the user’s system

Return Value

String array of length 7 as defined by the following table:

Index Description

0 Computer name

1 User log in name

2 Returns ‘Admin’ if logged in with administrator privilege otherwise

returns ‘User’.

3 Available system RAM in bytes

4 Operating system class. Returns ‘WINNT’. With earlier versions this

maybe WIN9X if running on Windows 95, 98 or ME. These platforms are

not supported by version 2.

5 Operating System description. Returns descriptive name for operating

system.

GetUserFile

Type string string string array string

Description file filter default extension options initial file

Compulsory No No No No

Default <<empty>> <<empty>>

Return type: string

Function opens a dialog box to allow the user to select a file.

82 Commands

Argument 1

Defines file filters. The ‘save as type’ list box may contain any number of entries that
defines the type of file to be displayed. This argument defines the entries in this list box.

Each entry consists of a description followed by a pipe symbol ('|') then a list of file
extensions separated by semi-colons (';'). Entries are also separated by the pipe ('|'') symbol.
For example: to list just data files enter:

“Data files|*.sxdat;*.dat'”

Note that the text is enclosed in both single and double quotes. Strings in expressions are
denoted by single quotes as usual but the semi-colon is normally used to separate
commands on a single line. This is inhibited by enclosing the whole string in double quotes.

If you wanted to provide entries for selecting - say - both data and netlists, you could use
the following:

“Data files|*.sxdat;*.dat|Netlist files|*.net;*.cir'”

Argument 2

The default extension specified without the dot. This is the extension that will automatically
be added to the file name if it does not already have one of the extensions specified in the
filter.

Argument 3

String array that specifies a number of options. Any or all of the following may be
included:

'ChangeDir' If present, the current working directory will change to that containing the file selected by the user

'Open' If present a File Open box will be displayed other wise a Save As box will be displayed.

'NotExist' If used with 'Open', the file is not required to already exist to be accepted

'ShowReadOnly' If present and 'Open' is also specified, an Open as read- only check box will be displayed. The user

selection of this check box will be returned in either the second or third field of the return value.

'FilterIndex' If specified, the type of file selected by the user will be returned as an index into the list of file

filters specified in argument 1. So, 0 for the first, 1 for the second etc.

Argument 4

Initial file selection.

Return value

String array of length between 1 and 3 as described in the following table:

Option

 'ShowReadOnly'

Option

'FilterIndex'

Return value

No No Path name only

Yes No 2 element array:

index=0 path name

index=1 Read only checked - 'TRUE' or
'FALSE'

No Yes 2 element array

index=0 path name

index=1 Filter index selected

Yes Yes 3 element array

index=0 path name

index=1 Filter index selected

index=2 Read only checked - 'TRUE' or
'FALSE'

 Commands 83

84 Commands

GetVecStepParameter

Type real/complex array

Description vector

Compulsory Yes

Default

Return type: string

This function retrieves the name of the parameter that was stepped to obtain the vector data
supplied. It will only return a meaningful result for data vectors generated by a multi-step
analysis. For example, if an analysis was performed which stepped the value of the resistor
R7, this function would return 'R7' when applied to any of the data vectors created by the
simulator. If the analysis was a Monte Carlo run, the function will return 'Run'.

If this function is applied to single division data as returned by a normal single step run, the
return value will be an empty vector.

GetVecStepVals

Type real/complex array

Description vector

Compulsory Yes

Default

Return type: real array

This function retrieves the values assigned to the parameter that was stepped to obtain the
vector data supplied. It will only return a meaningful result for data vectors generated by a
multi-step analysis. For example, if an analysis was performed which stepped the value of

the resistor R7 from 100Ω to 500Ω in 100Ω steps, this function would return [100, 200,
300, 400, 500]. If the analysis was a Monte Carlo run, the function will return the run
numbers starting from 1.

If this function is applied to single division data as returned by a normal single step run, the
return value will be an empty vector.

GetWindowNames

No Arguments

Return type: string array

Returns names of current windows. Result can be supplied as argument to Focus command
using /named switch.

GetXAxis

No Arguments

Return type: string

Returns the id of the x-axis in the currently selected graph.

GraphLimits

No Arguments

Return type: real array

 Commands 85

The x and y axis limits of the currently selected graph and axis type (log/linear). Function
will fail if there are no selected graphs. Meaning of each index of the 6 element array are as
follows:

0 x-axis lower limit
1 x-axis upper limit
2 y-axis lower limit
3 y-axis upper limit
4 1 if x-axis is logarithmic, 0 if linear
5 1 if y-axis is logarithmic, 0 if linear

GroupDelay

Arguments:

Type: real/complex array

Description: vector

Compulsory: Yes

Default:

Return array: real array

Returns the group delay of the argument. Group delay is defined as:

d phase y

dx

(())
.

.

1

2 π

where y is the supplied vector and x is its reference. The GroupDelay function expects the
result of AC analysis where y is a voltage or current and its reference is frequency.

This function will yield an error if its argument is complex and has no reference.

Groups

Arguments:

Type: string

Description: Title|Name

Compulsory: No

Default: 'name'

Return type: string array

Returns names of available groups. The first element (with index 0) is the current group. If
the argument 'Title' is provided, the full title of the group is returned. More information
about groups can be found in Accessing Simulation Data.

GroupsInCollection

Arguments

Type: string

Description: Collection name

Compulsory: Yes

Default:

Return type: string array

Returns array of group names belonging to the specified named collection. For information
on collections see Accessing Simulation Data.

HasLogSpacing

Type real

Description Vector

Compulsory Yes

Default

86 Commands

Return type: real

Performs a simple test to determine whether the supplied vector is logarithmically spaced.
The return value is 1.0 if the vector is logarithmically spaced and 0.0 otherwise. Note the
function expects to be supplied with x-values.

Histogram

Arguments

Type: real array real

Description: Vector Number of bins

Compulsory: Yes Yes

Default:

Return type: real array

Creates a histogram of argument 1 with the number of bins specified by argument 2. The
bins are divided evenly between the maximum and minimum values in the argument.

Histograms are useful for finding information about waveforms that are difficult to
determine by other means. They are particularly useful for finding "flat" areas such as the
flat tops of pulses as these appear as well defined peaks. The Histogram() function is used
in the rise and fall time scripts for this purpose.

User's should note that using this function applied to raw transient analysis data will
produce misleading results as the values are unevenly spaced. If you apply this function to
simulation data, you must either specify that the simulator outputs at fixed intervals (select
the Output at interval option in the Pulsonix Schematics Simulator Parameters... dialog
box) or you must interpolate the results using the Interp function.

Iff

Arguments:

Type: real array real array real array

Description: Vector to be
filtered

Coefficients Initial conditions

Compulsory: Yes Yes No

Default: zero

Return type: same as args 2 and 3

If the first argument evaluates to TRUE (i.e. non-zero) the function will return the value of
argument 2. Otherwise it will return the value of argument 3. Note that the type of
arguments 2 and 3 must both be the same. No implicit type conversion will be performed
on these arguments.

IIR

Arguments:

Type: real array real array real array

Description: Vector to be
filtered

Coefficients Initial conditions

Compulsory: Yes Yes No

Default: zero

Return type: real array

Performs "Infinite Impulse Response" digital filtering on supplied vector. This function
performs the operation:

y
n
 = x

n
 . c

0
 + y

n-1
 . c

1
 + y

n-2
 . c

2
 ...

 Commands 87

Where:

x is the input vector (argument 1)

c is the coefficient vector (argument 2)

y is the result (returned value)

The third argument provide the "history" of y i.e. y
-1
, y

-2
 etc. as required.

The operation of this function (and also the FIR function) is simple but its application can
be the subject of several volumes! In principle an almost unlimited range of IIR filtering
operations may be performed using this function. Any text on Digital Signal Processing
will provide further details.

User's should note that using this function applied to raw transient analysis data will not
produce meaningful results as the values are unevenly spaced. If you apply this function to
simulation data, you must either specify that the simulator outputs at fixed intervals (select
the Output at interval option in the Pulsonix Schematics Simulator Parameters... dialog
box) or you must interpolate the results using the Interp function.

Example

The following graph shows the result of applying a simple first order IIR filter to a step:

Time/µSecs 20µSecs/div

0 20 40 60 80 100

/V

0

0.2

0.4

0.6

0.8

1

1 :r1_p 2 IIR(:r1_p, [0.0951626, 0.904837])

The coefficients used give a time constant of 10 * the sample interval. In the above the

sample interval was 1µSec so giving a 10µSec time constant. As can be seen a first order
IIR filter has exactly the same response as an single pole RC network. A general first order
function is:

y
n
 = x

n
 . c

0
 + y

n-1
 . c

1

where c
0
=1-exp(-T/τ)

and c
1
=exp(-T/τ)

and τ=time constant

and T=sample interval

The above example is simple but it is possible to construct much more complex filters
using this function. While it is also possible to place analog representations on the circuit
being simulated, use of the IIR function permits viewing of filtered waveforms after a
simulation run has completed. This is especially useful if the run took a long time to
complete.

88 Commands

im

Arguments

Type: real/complex array

Description:

Compulsory: Yes

Default:

Return type: real array

Returns imaginary part of argument.

imag

Identical to im()

InputGraph

Arguments:

Type: string string

Description: initial text message

Compulsory: No No

Default: <<empty>>

Return type: string

Opens a simple dialog box prompting the user for input. Dialog box position is chosen to
keep selected graph visible if possible. Argument provides initial text, return value is text
entered by user. The function returns an empty vector if the user cancels the dialog box.

Integ

Arguments:

Type: real array

Description: vector

Compulsory: Yes

Default:

Return type: real array

Integrates the argument with respect to its reference. See “Vector References” for details.

The function uses simple trapezoidal integration.

An error will occur if the argument supplied has no reference.

Interp

Arguments:

Type: real array real real real

Description: Vector to be
interpolated

Number of points Interpolation order include last point

Compulsory: Yes Yes No No

Default: 2 FALSE

Returns a vector with length specified by argument 2 obtained by interpolating the vector
supplied as argument 1 at evenly spaced intervals. The optional third argument specifies the
interpolation order. This can be any integer 1 or greater but in practice there are seldom
reasons to use values greater than 4. If argument 4 is TRUE (1) the final point of the
interpolated result will coincide with the final point of the input vector and the interval

 Commands 89

between points is T/(N-1) where T is the interval of the whole input vector and N is the
number of points. If argument 4 is FALSE (0) the interval is T/N and the final point is at a
location T/N before the final input point. The latter behaviour is compatible with earlier
versions and is also what should be used if the function is interpolating data to be used by
the FFT function.

The Interp() function overcomes some of the problems caused by the fact that raw transient
analysis results are unevenly spaced. It is used by the FFT plotting scripts to provide evenly
spaced sample points for the FFT() function.

IsComplex

Arguments:

Type: any

Description: vector

Compulsory: Yes

Default:

Return type: real

Returns 1 (=TRUE) if the supplied argument is complex and 0 (=FALSE) if the argument is
any other type

IsFullPath

Type string

Description path

Compulsory Yes

Default

Return type: real

Returns TRUE if the supplied path name is a full absolute path.

Argument 1

File system path name

Return Value

TRUE if arg is a full absolute path. FALSE if it is a relative path.

IsModelFile

Type string string

Description Path of file Option

Compulsory Yes No

Default

Return type: real

Returns 1 if the specified file contains .MODEL, .SUBCKT or .ALIAS definitions.
Otherwise returns 0. The function will unconditionally return 0 if the file has any of the
following extensions:

.EXE, .COM, .BAT, .PIF, .CMD, .SCH, .SXSCH, .SXDAT,.SXGPH

This will be overridden if the second argument is set to 'AllExt'.

90 Commands

IsNum

Arguments:

Type: any

Description: vector

Compulsory: Yes

Default:

Return type: real

Returns 1 (=TRUE) if the supplied argument is numeric (real or complex) and 0 (=FALSE)
if the argument is a string

IsScript

Type string

Description script name

Compulsory Yes

Default

 Return type: real

Function to determine whether the supplied script name can be located. Calling this script
will fail if this function returns FALSE. Note that the function doesn’t check the script
itself. It only determines whether or not it exists.

Argument 1

Script name

Return Value

Returns TRUE if the supplied script name can be located in the standard script path.

IsStr

Arguments:

Type: any

Description: vector

Compulsory: Yes

Default:

Return type: real

Returns 1 (=TRUE) if the supplied argument is a string and 0 (=FALSE) if the argument is
numeric (real or complex).

Length

Arguments:

Type: any

Description: vector

Compulsory: Yes

Default:

Return type: real

Returns the number of elements in the argument. The result will be 1 for a scalar and 0 for
an empty value.

 Commands 91

The Length function is the only function which will not return an error if supplied with an
"empty" value. Empty variables are returned by some functions when they cannot produce
a return value. All other functions and operators will yield an error if presented with an
empty value and abort any script that called it.

ListDirectory

Type string string

Description Path specification Option

Compulsory Yes No

Default ‘none’

Return type: string array

Lists all files that comply with the spec provided in argument 1.

Argument 1

Specification for output. This would usually contain a DOS style wild card value. No
output will result if just a directory name is given.

Argument 2

If omitted, the result will be file names only. If set to 'fullpath', the full path of the files will
be returned.

ln

Arguments:

Type: real/complex array

Description: vector

Compulsory: Yes

Default:

Return type: real/complex array

Returns the natural logarithm of the argument. If the argument is real and 0 or negative an
error will result. If the argument is complex it will return a complex result even if the
imaginary part is 0 and the real part negative. An error will always occur if both real and
imaginary parts are zero.

Locate

Arguments:

Type: real real

Description: vector search value

Compulsory: Yes Yes

Default:

Return type: real

Function performs a binary search on the input vector (argument 1) for the value specified
in argument 2. The input vector must be monotonic i.e. either always increasing or always
reducing. This is always the case for the reference vector see “Vector References” of a
simulation result. If the input vector is increasing (positive slope) the return value is the
index of the value immediately below the search value. If the input vector is decreasing
(negative slope) the return value is the index of the value immediately above the search
value.

log

Identical to ln.

92 Commands

log10

Arguments:

Type: real/complex array

Description: vector

Compulsory: Yes

Default:

Return type: real/complex array

Returns log to base 10 of argument. If the argument is real and 0 or negative an error will
result. If the argument is complex it will return a complex result even if the imaginary part
is 0 and the real part negative. An error will always occur if both real and imaginary parts
are zero.

mag

Arguments:

Type: real/complex array

Description: vector

Compulsory: Yes

Default:

Return type: real array

Returns the magnitude of the argument. This function is identical to the abs function.

magnitude

Identical to mag

MakeCollection

Type string string

Description base name Obsolete

Compulsory Yes No

Default

Return type: string

Creates a collection and returns its assigned name. Collections are used to combine groups
that are related to each other. See “Collections” for details about collections.

The first argument is the base name. The actual name used (which is returned) is the base
name appended with a number assigned by the function to make the name unique.

Collections were originally developed for earlier versions of Pulsonix and were used to
handle data from multi-step analyses such as Monte Carlo. They are no longer used by the
front end but the functions and commands that access them are still available for user
applications.

MakeDir

Arguments:

Type: string

Description: Directory name

Compulsory: Yes

Default:

Return type: real

 Commands 93

MakeString

Type real string array

Description Number of elements in result Initial values

Compulsory Yes No

Default

Return type: string array

Creates an array of strings. Length of array is given as argument to function. The strings
may be initialised by supplying argument 2.

Argument 1

Number of elements to create in string array.

Argument 2

Initialises values of string. Can be used to extend an existing string. e.g:

 Let str = ['john', 'fred', 'bill']

 Let str = MakeString(6, str)

In the above the string str will be extended from length 3 to length 6 by the call to
MakeString.

Return Value

Returns new string

Max

Type real real

Description vector 1 vector 2

Compulsory Yes Yes

Default

Return type: real array

Returns an array equal to the length of each argument. Each element in the array holds the
larger of the corresponding elements of argument 1 and arguments 2

Maxidx

Arguments:

Type: real/complex array

Description: vector

Compulsory: Yes

Default:

Return type: real

Returns index of the array element in argument 1 with the largest magnitude.

Maxima

Type real array real array string

Description vector [min limit, max limit] options

Compulsory Yes No No

Default [-, +] <<empty>>

94 Commands

Return type: real array

Returns array of values holding every maximum point in the supplied vector whose value
complies with limits specified in argument 2.

Argument 1

Input vector

Argument 2

Real array of max length 2. Specifies limits within which the input values must lie to be
included in the result.

0 Minimum limit i.e. maxima must be above this to be accepted

1 Maximum limit i.e. maxima must be below this to be accepted.

Argument 3

String array of max length 2. Specifies two possible options:

'xsort' If specified the output is sorted in order of their x-values (reference). Otherwise the values

are sorted in descending order of y magnitude.

'nointerp' If not specified the values returned are obtained by fitting a parabola to the maximum and

each point either side then calculating the x, y location of the point with zero slope.

Otherwise no interpolation is carried out and the literal maximum values are returned.

‘noendpts’ If specified, the first and last points in the data will not be returned as maximum points.

Return value

The function returns the XY values for each maximum point. The X-values are returned as
the vector's reference.

Maximum

Type real/complex array real real

Description Vector Min range Max range

Compulsory Yes No No

Default start of vector end of vector

Return type: Real

Returns the largest value found in the vector specified in argument 1 in the range of x
values specified by arguments 2 and 3

MCOptions

Arguments:

Type: real string real

Description: number of runs log file name seed value

Compulsory: No No No

Default: 10 empty -1 (no seed)

Return type: string array

This is a special purpose function designed as part of the Monte Carlo analysis user
interface. It opens a dialog box displaying Monte Carlo options:

 Commands 95

The three arguments initialise the controls. If no values are supplied for log file and set
seed, the associated check boxes will be clear. The return vector gives the values entered by
the user. If the "Set Seed" check box is clear a value of -1 is returned for the seed. If the
"Log File" check box is clear an empty string is returned for the log file. Note that the array
returned contains only strings even though two of the results are actually numbers.

mean

Arguments:

Type: real/complex array

Description: vector

Compulsory: Yes

Default:

Return type:

Returns the average of all values in supplied argument. If the argument is complex the
result will also be complex.

Mean1

Arguments:

Type: real array real real

Description: Input vector start x value end x value

Compulsory: Yes No No

Default: Start of input
vector

End of input
vector

Return type: real

Returns the integral of the supplied vector between the ranges specified by arguments 2 and
3 divided by the span (= arg 3 -arg 2). If the values supplied for argument 2 and/or 3 do not
lie on sample points, second order interpolation will be used to estimate y values at those
points.

MessageBox

Type string array string array

Description Message Options

Compulsory Yes No

Default

Return type: string

Opens a message dialog box with a choice of styles.

Argument 1

1 or 2 element string array. First element is the text of the message to be displayed in the
box. The second element is the box title. If the second element is not supplied the box title
will be the name of the application - e.g. ‘Pulsonix Micron AD’

96 Commands

Argument 2

1 or 2 element string array. First element is box style. This may be one of the following:

'AbortRetryIgnore' Three buttons supplied for user response - Abort, Retry and Ignore

'Ok' Ok button only

'OkCancel' Ok and Cancel button

'YesNo' Yes and No buttons

'YesNoCancel' Yes, No and Cancel buttons.

Default = 'OkCancel'

Second element is icon style. A small icon is displayed in the box to indicate the nature of
the message. Possible values:

'Warn'

'Info'

'Question'

'Stop'

Default = 'Info'

Return value

 is a single string indicating the user's response. One of:

'Abort'

'Cancel'

'Ignore'

'No'

'Ok'

'Retry'

'Yes'

Mid

Arguments:

Type: string real real

Description: String Start index Length of result

Compulsory: Yes Yes No

Default: to end of string

Return type: string

Returns a string constructed from a sub string of argument 1. First character is at index
specified by argument 2 while argument 3 is the length of the result. The first character is at
index 0.

Example

Mid('Hello World!', 6, 5)

will return 'World'.

See also

Char

 Commands 97

Minidx

Arguments:

Type: real/complex array

Description: vector

Compulsory: Yes

Default:

Return type: real

Returns index of the array element in argument 1 with the smallest magnitude.

Min

Type real real

Description vector 1 vector 2

Compulsory Yes Yes

Default

Return type: real array

Returns an array equal to the length of each argument. Each element in the array holds the
smaller of the corresponding elements of argument 1 and arguments 2

Minima

Type real array real array string

Description vector [max limit, min limit] options

Compulsory Yes No No

Default [+, -] <<empty>>

Return type: real array

Returns array of values holding every minimum point in the supplied vector whose value
complies with limits specified in argument 2.

Argument 1

Input vector

Argument 2

Real array of max length 2. Specifies limits within which the input values must lie to be
included in the result.

0 Maximum limit i.e. minima must be below this to be accepted

1 Minimum limit i.e. minima must be above this to be accepted.

Argument 3

String array of max length 2. Specifies two possible options:

'xsort' If specified the output is sorted in order of their x-values (reference).

Otherwise the values are sorted in descending order of y magnitude.

'nointerp' If not specified the values returned are obtained by fitting a parabola

to the minimum and each point either side then calculating the x, y

location of the point with zero slope. Otherwise no interpolation is

carried out and the literal minimum values are returned.

‘noendpts’ If specified, the first and last points in the data will not be returned as

minimum points.

98 Commands

Return value

The function returns the XY values for each minimum point. The X-values are returned as
the vector's reference.

Minimum

Type real/complex array real real

Description Vector Min range Max range

Compulsory Yes No No

Default start of vector end of vector

Return type: Real

Returns the smallest value found in the vector specified in argument 1 in the range of x
values specified by arguments 2 and 3

ModelLibsChanged

No arguments

Return type: real

Returns 1 if the installed model libraries have been changed since the last call to this
function. The function always returns 1 the first time it is called after program start.

norm

Arguments:

Type: real/complex array

Description: vector

Compulsory: Yes

Default:

Return type: real/complex array

Returns the input vector scaled such that the magnitude of its largest value is unity. If the
argument is complex then so will be the return value.

NumDivisions

Type real/complex array

Description vector

Compulsory Yes

Default

Return type: real

Returns the number of divisions in a vector. Vectors created by multi-step runs such as
Monte Carlo are sub-divided into divisions with one division per step. For a full
explanation of this concept, see “Multi-division Vectors”.

NumElems

Type any

Description vector

Compulsory Yes

Default

 Commands 99

Return type: real array

Returns the number of elements in a vector. It is similar to the Length function but differs
in the way it handles multi-division vectors. NumElems will return an array element for
each division in the vector whereas Length will return the number of elements of the first
division only.

OpenEchoFile

Type string string

Description File name Access mode

Compulsory Yes Yes

Default

Return type: real

Redirects the output of the Echo command to a file. Redirection is disabled when the
CloseEchoFile function is called or when control returns to the command line.

Argument 1

File name.

Argument 2

A single letter to determine how the file is opened. Can be either ‘w’ or ‘a’. If ‘w’, a new
file will be created. If a file of that name already exists, it will be overwritten. If ‘a’ and the
file already exists, it will be appended.

Parse

Arguments:

Type: string string string

Description: Input string Delimiters options

Compulsory: Yes No No

Default: Space, tab <<empty>>

Return type: string array

Splits up the string supplied as argument 1 into substrings or tokens. The characters
specified in argument 2 are treated as separators of the substrings. For example, the
following call to Parse():

Parse('c:\Spice\work\amp.sch', '\')

returns:

'c:'

'Spice'

'work'

'amp.sch'

If the second argument is omitted, spaces and tab characters will be treated as delimiters. If
a space is include in the string of delimiters, tab characters will be automatically added.

If the third arguments is present and equal to 'quoted' the function will treat string enclosed
in double quotes as single indivisible tokens.

100 Commands

ParseParameterString

Type string string array string string

Description String to parse Parameter names

to process

action Write value

Compulsory Yes Yes Yes No

Default

Return type: string array or scalar

Parses a string of name-value pairs and performs some specified action on them. The
function can read specified values and return just the values. It can write to specific values
and return a modified string. It can also delete specific values.

Argument 1

String to parse. This is a list of name-value pairs but may also contain any number of
unlabelled values at the start of the string. The number of unlabelled values must be
specified in argument 3 (see below). Examples:
Without any unlabelled value:

 W=1u L=2u AD=3e-12 AS=3e-12

With 1 unlabelled value

 2.0 DTEMP=25.0

The above shows an equals sign separating names and values, but these may be omitted.

Argument 2

String array listing the names to be processed. If reading (see below) only the values of the
names supplied here will be returned. If writing, the names listed in this argument will be
edited with new values supplied in argument 4. If deleting, these names will be removed.

Unlabelled parameters may be referenced using the special name ‘$unlabelled$’ followed
by the position. I.e. the first unlabelled parameter is position 1, the second 2 and so on. So
‘$unlabelled$1’ refers to the first unlabelled parameter.

Argument 3

1 or 2 element string array. The first element is the action to be performed. The second
element is the number of unlabelled parameters that are expected in the input string. This is
zero if omitted.

Argument 4

Values to write. These have a 1:1 correspondence with the parameter names in argument 2.

Return Value

If reading, the return value is an array of strings holding the values of the specified
parameters. Otherwise it the input string appropriately modified according to the defined
action.

Examples

This will return the string array [‘1u’, ‘2u’]:

 Let str = 'W=1u L=2u AD=3e-12 AS=3e-12'

 Commands 101

PathEqual

Type string array string array

Description Path 1 Path 2

Compulsory Yes Yes

Default

Return type: real array

Compares two string arrays and returns a real array of the same length with each element
holding the result of a string comparison between corresponding input elements. The string
comparison assumes that the input arguments are file system path names and will be case
sensitive.

Argument 1

First pathname or pathnames to be compared.

Argument 2

Second pathname or pathnames to be compared.

Return Value

Real array of the same length as the arguments. If the lengths of the arguments are
different, an empty vector will be returned. Each element in the array will be either -10, or
+1. 0 means the two strings are identical.

ph

Type: real/complex array

Description: vector

Compulsory: Yes

Default:

Return type: real array

Returns the phase of the argument in degrees.

Each of the function ph(), phase() and phase_rad() produce a continuous output i.e. it does
not wrap from 180 degrees to -180 degrees.

This function always returns a result in degrees. This has changed from versions 3.1 and
earlier which returned in degrees or radians depending on the setting of the ‘Degrees’
option. For phase in radians, use phase_rad().

phase

identical to ph.

phase_rad

Arguments:

Type: real/complex array

Description: vector

Compulsory: Yes

Default:

Return type: real array

Identical to ph and phase functions except that the result is always in radians and does not
depend on the setting of the option "degrees".

102 Commands

PhysType

Arguments:

Type: real/complex array

Description: vector

Compulsory: Yes

Default:

Return type: string

Returns the physical type of the argument. Possible values are.

'' (meaning dimensionless quantity)

'unknown'

'Voltage'

'Current'

'Time'

'Frequency'

'Resistance'

'Conductance'

'Capacitance'

'Inductance'

'Energy'

'Power'

'Charge'

'Flux'

'Volt^2'

'Volt^2/Hz'

'Volt/rtHz'

'Amp^2'

'Amp^2/Hz'

'Amp/rtHz'

'Volts/sec'

See also

Units

Progress

Arguments:

Type: real string array

Description: Position of
progress bar in %

options/control

Compulsory: Yes No

Default: <<empty>>

 Commands 103

Return type: real

Opens a dialog box showing a progress bar:

Argument 1

Value from 0 to 100 specifying the position of the bar.

Argument 2

String array of max length 2 used to specify options and control as follows:

'open' Box is displayed (cannot be used with 'close')
'close' Box is hidden (cannot be used with 'open')
'smooth' If specified progress bar is smooth, otherwise it is segmented (as shown

above)

Return value

The function returns the value of argument 1

QueryData

Type string array string array

Description Data Filter

Compulsory Yes Yes

Default

Return type: string array

Filters a list of data items according to search criteria.

Argument 1

The data to be filtered. This should consist of an array of strings comprising semi- colon
delimited fields. The filter supplied in argument 2 matches each field to certain criteria and
returns the data in the output if those criteria are satisfied.

Argument 2

Filter to determine if data in arg 1 is passed to the output. The filter consists of one or more
semi-colon delimited lists which can be combined in Boolean combinations. Each of the
lists is compared with the input data for a match and if the resulting Boolean expression is
true, the data item is accepted and passed to the return value. Wild cards '*' and '?' may be
used in any field. The system is best explained with examples.

Suppose a data item in arg 1 is as follows.

 IRFI520N;nmos_sub;X;NMOS;;;;*

and the filter supplied in arg 2 is:

 ;;X;*;*;*;*;*

This will match successfully. The third fields is the same in both the data and the filter and
the remaining filter fields are the '*' wild card which means that anything will be accepted
in the corresponding data field.

In the above simple examples, only one filter list has been supplied. However, it is possible
to use more sophisticated filters consisting of multiple lists combined using Boolean
operators. Boolean operators are specified with the key words:

104 Commands

\OR

\AND

\XOR

\NOT

These can be used to make a Boolean expression using “reverse polish” notation. Here is an
example:

 ['*;nmos;*;*;*;*;*;*', '*;nmos_sub;*;*;*;*;*;*', '\OR']

This will accept any data where the second field is either 'nmos' or 'nmos_sub'. Note that
the keyword '\OR' is applied after the filter lists.

As well as the '*' wild card, the '?' may also be used. '?' matches only a single character
whereas '*' matches any number of characters. For example:

 ?mos

Would match 'pmos' as well as 'nmos'. It would also match any other four letter word that
ended with the three letters 'mos'.

Return Value

String array of length up to but not exceeding the length of argument 1. Contains all arg 1
items that match the filter as explained above.

RadioSelect

Arguments:

Type: real string string

Description: Number of button
initially selected

Button labels

Compulsory: No No No

Default: 1 empty Dialog box caption

Return type: real

Opens a dialog box with up to 6 radio buttons. The number of buttons visible depends on
the length of argument 2. All six will be displayed if it is omitted.

The labels for each button is specified by argument 2. The button initially selected is
specified by argument 1. Argument 3 provides the text in the dialog boxes caption bar.

The return value identifies the selected button with the top most being 1. If the user cancels
the function returns 0.

See also

BoolSelect

EditSelect

ValueDialog

Range

Arguments:

Type: real/complex array real real

Description: vector start index end index

Compulsory: Yes No No

Default: 0 Vector length-1

 Commands 105

Return type: real/complex array

Returns a vector which is a range of the input vector in argument 1. The range extends from
the indexes specified by arguments 2 and 3. If argument 3 is not supplied the range extends
to the end of the input vector. If neither arguments 2 or 3 are supplied, the input vector is
returned unmodified.

re

Arguments:

Type: real/complex array

Description: vector

Compulsory: Yes

Default:

Return type: real array

Returns the real part of the complex argument.

ReadClipboard

No arguments

Return type: string array

Returns text contents of the windows clipboard. Data is returned as one line per array
element.

Note that the Show command can be used to write to the clipboard.

ReadConfigSetting

Type string string

Description Section Key

Compulsory Yes Yes

Default

Return type: string

Reads a configuration setting. Configuration settings are stored in the configuration file.
See ‘Configuration Settings’. Settings are defined by a key-value pair and are arranged into
sections. The function takes the name of the key and section and returns the value.

Note that option settings (as defined by the Set command) are placed in the ‘Options’
section. Although these values can be read by this function this is not recommended and
instead you should always use the GetOption function.

Argument 1

Section name. See description above for explanation.

Argument 2

Key name. See description above for explanation.

Return Value

Value read from configuration file.

See Also

WriteConfigSetting

106 Commands

ReadFile

Arguments:

Type: string

Description: File name

Compulsory: Yes

Default:

Return type: string array

Returns an array of strings holding lines of text from the file specified by argument 1. The
file is expected to contain only ASCII text. The operation will be aborted if non-ASCII
characters are encountered.

ReadIniKey

Type string string string

Description Inifile name Section name Key name

Compulsory Yes Yes Yes

Default

Return type: string array

Reads an INI file. An INI file usually has the extension .INI and is used for storing
configuration information. INI files are used by many applications and follow a standard
format as follows:

 [section_name1]

 key1=value1

 key2=value2

 ...

 [section_name2]

 key1=value1

 key2=value2

 ...

 etc.

There may be any number of sections and any number of keys within each section.

The ReadIniKey function can return the value of a single key and it can also return the
names of the all the keys in a section as well as the names of all the sections.

Argument 1

File name. You should always supply a full path for this argument. If you supply just a file
name, the system will assume that the file is in the WINDOWS directory. This behaviour
may be changed in future versions. For maximum compatibility, always use a full path.

Argument 2

Section name. If this argument is an empty string, the function will return the names of the
sections in the file.

Argument 3

Key name. If this argument is an empty string and argument 2 is not an empty string, the
function will return the names of all the keys in the named section.

 Commands 107

ReadRegSetting

Type string string string

Description Key name Value name Top level tree

Compulsory Yes Yes No

Default ‘HKCU’

Return type: string

Reads a string setting from the windows registry. Currently this function can only read
settings in the HKEY_CURRENT_USER and HKEY_LOCAL_MACHINE top level trees.

Argument 1

Name of key. This must be a full path from the top level. E.g. 'Software\Westdev\Pulsonix\'

Argument 2

Name of value to be read

Argument 3

Top level tree. This may be either 'HKEY_CURRENT_USER' or
'HKEY_LOCAL_MACHINE' or their respective abbreviations ‘HKCU’ and ‘HKLM’.

Return Value

Returns value read from the registry. If the value doesn’t exist, the function returns an
empty vector.

real

Identical to re.

Ref

Arguments:

Type: real/complex array

Description: vector

Compulsory: Yes

Default:

Return type: real/complet array

Returns the reference of the argument. See “Vector References”.

RefName

Arguments:

Type: real/complex array

Description: vector

Compulsory: Yes

Default:

Return type: string

Returns the name of the reference of the supplied vector. See “Vector References”. Note
that the Ref function (above) returns the actual data for the reference.

108 Commands

RelativePath

Arguments:

Type: string string

Description: Full path name Reference directory

Compulsory: Yes No

Default: Current directory

Return type: string

Returns a path relative to the reference directory (argument 2 or current working directory)
of the full path name supplied in argument 1.

See also

FullPath

SplitPath

RemoveModelFile

Type string array

Description Model path names

Compulsory Yes

Default

Return type: string

Uninstalls the model library paths specified in the argument.

RestartTranDialog

Type real

Description Initial stop time

Compulsory Yes

Default

Return type: real

Opens a dialog box allowing the user to specify a new stop time for a transient analysis.
The value is initialised with the argument. The return value is the stop time entered by the
user. The user will not be able to enter a value less than that supplied in the argument.

Rms

Arguments:

Type: real array

Description: vector

Compulsory: Yes

Default:

Return type: real array

Returns a vector of the accumulative rms value of the input. Unlike RMS1 this function
returns a vector which can be plotted.

 Commands 109

RMS1

Arguments:

Type: real array real real

Description: vector start x value end x value

Compulsory: Yes No No

Default: start of input
vector

end of input vector

Return type: real

Returns the root mean square value of the supplied vector between the ranges specified by
arguments 2 and 3. If the values supplied for argument 2 and/or 3 do not lie on sample
points, second order interpolation will be used to estimate y values at those points.

rnd

Arguments:

Type: real array

Description: vector

Compulsory: Yes

Default:

Return type: real array

Returns a vector with each element a random value between 0 and the absolute value of the
argument's corresponding element.

RootSumOfSquares

Arguments:

Type: real real real

Description: vector start x value end x value

Compulsory: Yes No No

Default: start of input
vector

end of input vector

Return type: real array

Similar to RMS1 function but returns the root of the sum without performing an average.

Scan

Arguments:

Type: string string

Description: string to scan delimiter

Compulsory: Yes No

Default:

Return type: string array

Splits a character delimited string into components. Returns result as string array. Character
used as delimiter may be passed as argument 2. If argument 2 omitted delimiter defaults to
a semi-colon. This function is similar to the Parse function but with two important
differences:

• Empty fields are supported. E.g. in 'BUF04;buf;;Buffers;;' the double semi-colon
 after 'buf' would return an empty entry in the returned array. The Parse function
 would ignore it. So:
 Scan('BUF04;buf;;Buffers;;')

110 Commands

 Commands 111

would return:

 ['BUF04', 'buf', '', 'Buffers', '']

• Only a single character is permitted for delimiter. Parse accepts any number.

ScriptName

No Arguments

Return type: string

Returns the name of the currently executing script.

Search

Arguments:

Type: string array string array

Description: list search items to search in
list

Compulsory: Yes Yes

Default:

Return type: real array

Searches a list of strings supplied in argument 1 for the item(s) supplied in argument 2.
Function returns a real array of length equal to the length of argument 2. The return value is
an array of indexes into argument 1 for the items found in argument 2. If a string in
argument 2 is not found, the return value for that element will be -1.

SearchModels

Arguments:

Type: string

Description: File system tree to search

Compulsory: Yes

Default:

Return type: string

This is a special purpose function designed for use with the model installation system. It
returns an array of strings holding pathnames with wildcards of directories containing files
with SPICE compatible models. The argument specifies a directory tree to search. The
function will recurse through all sub directories of the supplied path.

Note that if the root directory of a large disk is specified, this function can take a
considerable time to return. It can however be aborted by pressing the escape key.

SelectColourDialog

Type string

Description Initial colour spec.

Compulsory No

Default Spec. for BLACK

Return type: string

Opens a dialog box allowing the user to define a colour. The box is initialised with the
colour spec. supplied as an argument. The function returns the new colour specification.

112 Commands

SelectColumns

Arguments:

Type: string array real string

Description: input data field number delimiter

Compulsory: Yes Yes No

Default: ';'

Return type: string array

Accepts an array of character delimited strings and returns an array containing only the
specified field.

Example

Data input (arg 1):

BUF600X1;Buf;;Buffers;;2,1,4,3

BUF600X2;Buf;;Buffers;;2,1,4,3

BUF601X1;Buf;;Buffers;;2,1,4,3

BUF601X2;Buf;;Buffers;;2,1,4,3

Field number (arg2)

0

Returns:

BUF600X1

BUF600X2

BUF601X1

BUF601X2

SelectDialog

Arguments:

Type: string array string array

Description: options list box entries

Compulsory: Yes Yes

Default:

Return type: real array

Opens a dialog box containing a list box. The list box is filled with string items supplied in
argument 2. The return value is the index or indexes of the items in the list box selected by
the user.

This function is used by a number of the standard menus.

There are a number of options available and these are specified in argument 1. This is an
array of strings of length up to 6. The meaning of each element is as follows:

 Commands 113

Index Possible values Description

0 Dialog box caption
1 Message above list box
2 'Multiple', 'Single' If 'single', only one item may be selected.

Otherwise any number of items can be selected.
3 'Sorted', '' If 'sorted', items in list are arranged in

alphabetical order. Otherwise they are in same
order as supplied.

4 Index of item to select at start. Only effective if
'single' selected for index 2. This is an integer
but must be entered as a string e.g. '2'.

5 Initial string in edit box
6 Default return value if none selected

The function return value is empty if the user cancels.

Example

SelectDialog(['Caption','Message','single','','1'], ['Fred','John','Bill'])

Will place strings 'Fred', 'John' and 'Bill' in the list box with 'John' selected initially. The
strings will be in the order given (not sorted).

SelectFontDialog

Type string string

Description Initial font spec. Name of object

being edited

Compulsory No No

Default Default font

Return type: string

Opens a dialog box allowing the user to define a font. The box is initialised with the font
spec. supplied as an argument. The function returns the new font specification.

A second argument may be specified to identify the name of the object whose font is being
edited. This is so that its font may be updated if the user presses the Apply button in the
dialog box.

If the user cancels the box, the function returns an empty vector.

Font specs are strings that provide information about the type face, size, style and other font
characteristics. Font specs should only be used with functions and commands that are
designed to accept them. The format of the font spec may change in future versions.

SelectRows

Arguments:

Type: string string real string

Description: input data test string field number delimiter

Compulsory: Yes Yes No No

Default: 0 ';'

Return type: string array

Accepts an array of character delimited strings and returns an array containing a selection
containing the test string at specified field.

Example

Data input (arg 1):

HA-5002/HA;buf;;Buffers;;

HA-5033/HA;buf;;Buffers;;

114 Commands

HA5002;buf;;Buffers;;

HA5033;buf;;Buffers;;

LM6121/NS;buf;;Buffers;;1,2,4,3

MAX4178;buf_5;;Buffers;;

MAX4278;buf_5;;Buffers;;

MAX496;buf_5;;Buffers;;

Test string (arg 2)

'buf'

Field number (arg 3)

1

Returns:

HA-5002/HA;buf;;Buffers;;

HA-5033/HA;buf;;Buffers;;

HA5002;buf;;Buffers;;

HA5033;buf;;Buffers;;

LM6121/NS;buf;;Buffers;;1,2,4,3

SelGraph

No Arguments

Return type: real

Returns 1 if at least one graph is open otherwise 0.

Shell

Type string string

Description Path to executable

file

options

Compulsory Yes No

Default

Return type: real array

Runs an external program and returns its exit code

Argument 1

File system path to executable file. This would usually be a binary executable but may be
any file that is defined as executable by the operating system.

If an incomplete path is specified, the process executable will be searched in the following
locations in the order given:The directory where the Pulsonix binary is located

1. The current directory

2. windows\SYSTEM32. windows is the location of the Windows directory.

3. windows\SYSTEM

4. The windows directory

5. The directories listed in the PATH environment variable

 Commands 115

Argument 2

String array containing one or more of the options defined in the following table:

Option name Description

‘wait’ If specified, the function will not return until the called process has exited.

‘command’ Calls OS command line interpreter to execute the command supplied. This can

be used to execute system commands such as ‘copy’ and ‘move’.

Return Value

Returns a real array of length 2 as defined below:

Index Description

0 Process exit code. If the process is still running when this function

returns, this value will be 259.

1 Error code as follows

0 Process launched successfully

1 Command processor not
found. (command options specified

2 Cannot find file

3 File is not executable

4 Access denied

5 Process launch failed

6 Unknown failure

ShellExecute

Type string string string string

Description File parameters default directory verb

Compulsory Yes No No No

Default none current directory ‘open’

Return type: string

Performs an operation on a windows registered file. The operation to be performed is
determined by how the file is associated by the system. For example, if the file has the
extension PDF, the Adobe Acrobat or Adobe Acrobat Reader would be started to open the
file. (Assuming Acrobat is installed and correctly associated)

Argument 1

Name of file to process. This can also be the path to a directory, in which case an ‘explorer’
window will be opened.

Argument 2

Parameters to be passed if the file is an executable process. This should be empty if arg 1 is
a document file.

Arguments 3

Default directory for application that processes the file

Argument 4

‘Verb’ that defines the operation to be performed. This would usually be ‘open’ but could
be ‘print’ or any other operation that is defined for that type of file.

Return Value

Returns one of the following

116 Commands

Value Description

‘OK’ Function completed successfully

‘NotFound’ File not found

‘BadFormat’ File format was incorrect

‘AccessDenied’ File could not be accessed due to insufficient privilege

‘NoAssoc’ File has no association for specified verb

‘Share’ File could not be accessed because of a sharing violation

‘Other’ Function failed for other reason

‘NotImplemented’ Function not implemented on this platform.

sign

Arguments:

Type: real array

Description: vector

Compulsory: Yes

Default:

Return type: real array

Returns 1 if argument is greater than 0 otherwise returns 0.

SimulationHasErrors

No arguments

Return type: real

Return 1 if the most recent simulation failed with an error. Otherwise returns 0.

Note that the function will return 0 if no simulation has been run or if the simulator has
been reset using the Reset command. It will also return 0, if the simulation failed because of
a fatal error that caused the simulator process to restart. This occurs when an access
violation or floating point exception occurs.

sin

Type real/complex array

Description vector

Compulsory Yes

Default

Return type: real/complex array

Return sine of argument specified in radians.

sin_deg

Type real/complex array

Description vector

Compulsory Yes

Default

Return type: real/complex array

Return sine of argument specified in degrees.

Sleep

Type string

Description Time in seconds

 Commands 117

Compulsory Yes

Default

Return type: real

Executes a timed delay.

Argument 1

Delay in seconds. The function has a resolution of 100mS and so the delay will be integral
multiples of that amount.

Return Value

Function returns the value of the argument.

Sort

Type: string

Description: string data

Compulsory: Yes

Default:

Return type: string array

Performs alphanumeric sort on string array. Result is string array the same length as
argument.

SortIdx

Arguments:

Type: any array string

Description: items to sort sort direction

Compulsory: Yes No

Default: 'forward'

Return type: real array

Sorts the items in argument 1 but instead of returning the actual sorted data the function
returns the indexes of the sorted values into the original array. The method of sorting
depends on the data type as follows:

string Alphabetic
real Numeric
complex Numeric - uses magnitude

If the second argument is 'reverse' the sort is performed in reverse order.

SplitPath

Arguments:

Type: string

Description: path

Compulsory: Yes

Default:

Return type: string array

Splits file system pathname into its component path. Return value is string array of length
4:

0 Drive including ':'. E.g. 'C:'
1 Directory including prefix and postfix '\'. E.g. ''Program Files\Pulsonix\Spice\'
2 Filename without extension. E.g. 'PulsonixSpice'

118 Commands

3 Extension including period. E.g. '.EXE'

sqrt

Arguments:

Type: real/complex array

Description: vector

Compulsory: Yes

Default:

Return type: real/complex array

Returns the square root of the argument. If the argument is real and negative, an error will
result. If however the argument is complex a complex result will be returned.

Str

Arguments:

Type: any

Description:

Compulsory: Yes

Default:

Return type: string

Returns the argument converted to a string.

StringLength

Arguments:

Type: string

Description: input string

Compulsory: Yes

Default:

Return type: real

Returns the number of characters in the supplied string.

StrStr

Type string string real

Description input string sub string offset

Compulsory Yes Yes No

Default 0

Return type: real

Locates the sub string in argument 2 in the input string. If found the function will return the
character offset of the sub string. If not found the function will return -1.

Argument 1

String to search

Argument 2

Sub-string

 Commands 119

Argument 3

Offset into search string where search should begin.

Return Value

Number of characters from start of search string where sub string starts. -1 if substring is
not found.

SumNoise

Arguments:

Type: real real real

Description: vector start x value end x value

Compulsory: Yes No No

Default: start of input vector end of input vector

Return type: real array

Identical to RootSumOfSquares function.

tan

Type real/complex array

Description vector

Compulsory Yes

Default

Return type: real/complex array

Return tan of argument specified in radians.

tan_deg

Type real/complex array

Description vector

Compulsory Yes

Default

Return type: real/complex array

Return tan of argument specified in degrees.

Time

Arguments:

Type: string

Description: option

Compulsory: No

Default: <<empty>>

Return type: string

Returns the current time in the format specified in control panel.

120 Commands

TranslateLogicalPath

Type string

Description Symbolic path

Compulsory Yes

Default

Return type: string

Converts symbolic path to a physical path.

Argument 1

Symbolic path as described in the “Sundry Topics” chapter of the User's Manual.

Return Value

Returns actual file system path.

TreeListDialog

Arguments:

Type: string array string array

Description: strings options

Compulsory: Yes No

Default: ['Select Item', '', '0',
'sort', 'false']

Return type: real

Opens the following dialog box allowing the user to specify an item in tree structured list.

Argument 1

Specifies the items to be displayed in the tree list. These are arranged in semi-colon
delimited fields with each field specifying a "branch" of the tree. For example, in the above
diagram, the item shown as "Full" would be specified as an element of argument 1 as
"Measure;Transient;RMS;Full".

 Commands 121

Argument 2

An array of strings of max length 5 specifying various other characteristics as defined
below:

0 Dialog caption
1 Identifies an item to be initially selected using the same format as the

entries in argument 1.
2 Initial expand level. '0' for no expansion, '1' expands first level of tree

etc.
3 Items will be alphabetically sorted unless this is set to 'nosort'
4 Items may selected and the box closed by double clicking unless this

item is set to 'true'

Return value

Returns index into argument 1 of selected item. If no item is selected, the function returns -
1. If the user selects "Cancel" the function returns an empty vector.

TRUE

Arguments:

Type: string string

Description: vector name option

Compulsory: Yes No

Default: <<empty>>

Return type: real

Returns TRUE (1) if the vector specified by name in argument 1 exists AND is non-zero. If
argument 2 is set to 'SearchCurrent', the current group as well as the local and global
groups will be searched for the vector, otherwise only the local and global groups will be
searched. See Accessing Simulation Data for an explanation of groups.

Truncate

Arguments:

Type: real array real real

Description: vector start x value end x value

Compulsory: Yes No No

Default: start of vector end of vector

Return type: real array

Returns a portion of the input vector with defined start and end points. Interpolation will be
used to create the first and last points of the result if the start and end values do not coincide
with actual points in the input vector.

Arguments 2 and 3 define the beginning and end of the vector.

Example

Suppose we have a vector called VOUT which was the result of a simulation running from

0 to 1mS. We want to perform some analysis on a portion of it from 250µS to 750µS. The
following call to Truncate would do this:

Truncate(VOUT, 250u, 750u)

If VOUT did not actually have points at 250µS and 750µS then the function would create
them by interpolation. Note that the function will not extrapolate points before the start or
after the end of the input vector.

122 Commands

Units

Arguments:

Type: any

Description: vector or vector
name

Compulsory: Yes

Default:

Return type: string

Returns the physical units of the argument. Possible return values are

 '' (meaning dimensionless)

 '?' (meaning unknown)

 'V'

 'A'

 'Secs'

 'Hertz'

 'Ohm'

 'Sie'

 'F'

 'H'

 'J'

 'W'

 'C'

 'Vs'

 'V^2'

 'V^2/Hz'

 'V/rtHz'

 'A^2'

 'A^2/Hz'

 'A/rtHz'

 'V/s'

See also

PhysType

unitvec

Arguments:

Type: real

Description: Number of
elements in result

Compulsory: Yes

Default:

Return type: real array

Returns a vector consisting of all 1's. Argument specifies length of vector.

 Commands 123

UpDownDialog

Arguments:

Type: string array string

Description: strings to sort box caption

Compulsory: Yes No

Default: 'Select Item Order'

Return type: string array

Opens a dialog box to allow the user to rearrange the order of a list of strings.

The box displays the strings given in argument 1 in the order supplied. The user can
rearrange these using the up and down arrow buttons. When the user presses OK the
function return the strings in the new order. If the user cancels the box the function returns
an empty vector.

Val

Arguments:

Type: any

Description: input value

Compulsory: Yes

Default:

Return type: real/complex

Returns argument converted to a value. The conversion assumes that the string supplied is
an expression.

See also

Str

ValueDialog

Arguments:

Type: real string string string

Description: Initial edit control
values

Edit control labels Dialog box caption Special
characteristics

Compulsory: No No No No

Default: 1 empty empty none

Return type: real array

Opens a dialog box with up to 10 edit controls allowing numeric values to be entered. The
following is an example of dialog box when used for selecting temperature step parameters:

The number of edit controls displayed is determined by the length of the first argument. If
this is omitted, all 10 will be displayed. Argument 1 specifies the initial values set in each
of the controls.

Argument 2 supplies the text of the label displayed to the left of each edit control. The
width of the dialog box will be adjusted to accommodate the length of this text.

124 Commands

Argument 3 specifies the text in the title bar of the dialog box

The value supplied for argument 4 will be treated as the default. All boxes are allowed to
vary over a range of -1e18 to +1e18.

The function returns an array representing the user selected value in each box. If cancelled
it returns an empty vector.

See also

BoolSelect

EditSelect

RadioSelect

vector

Arguments:

Type: real

Description: Number of
elements in result

Compulsory: Yes

Default:

Return type: real array

Returns a vector with length specified by the argument. The value in each element of the
vector equals its index.

See also

UnitVec

VectorsInGroup

Arguments:

Type: string string

Description: group name option

Compulsory: No No

Default: Current group

Return type: string array

Returns the names or optionally the physical type of all vectors in the specified group. If
argument 2 is present and equal to 'PhysType' the physical type (e.g. 'voltage', 'current',
'time' etc.) of the vectors will be returned otherwise the function will return their names.

WriteConfigSetting

Type string string string

Description Section Key Value

Compulsory Yes Yes No

Default

 Return type: real

Writes a configuration setting. Configuration settings are stored in the configuration file.
See ‘Configuration Settings’ in the User’s Manual for more information. Settings are
defined by a key-value pair and are arranged into sections. The function writes the value in
argument three to the specified key and section. If the value is missing, the setting will be
deleted.

 Commands 125

Argument 1

Section name

Argument 2

Key name

Argument 3

Value to set. Setting will be deleted if this is omitted.

Return Value

Returns TRUE is value was successfully written. Otherwise returns FALSE.

See Also

ReadConfigSettings

WriteIniKey

Type string string string string

Description File Section Key Value

Compulsory Yes Yes Yes No

Default Empty string

Return type: real

Writes a value to an ‘INI’ file. See for more information on INI files.

Argument 1

File name. You should always supply a full path for this argument. If you supply just a file
name, the system will assume that the file is in the WINDOWS directory. This behaviour
may be changed in future versions. For maximum future compatibility, always use a full
path.

Argument 2

Section name.

Argument 3

Key name.

Argument 4

Key value

Return Value

Returns 1 if function successful. Otherwise returns 0.

126 Commands

WriteRawData

Type real/complex

array

string string string

Description data File name Options Format of index

display

Compulsory Yes Yes No No

Default ‘ %d’

Return type: string

Writes data to the specified file in a SPICE3 raw file compatible format. See the built in
script write_raw_file for an application example. This can be found on the install CD.

The function returns a single string according to the success or otherwise of the operation.
Possible values are: ‘success’, ‘nodata’ and ‘fileopenfail’.

WriteRegSetting

Type string string string string

Description Key path Value name Value to be

written

Top level tree

Compulsory Yes Yes Yes No

Default ‘HKCU’

Return type: string

Writes a string value to the windows registry.

Argument 1

Name of key. This must be a full path from the top level.

Argument 2

Name of value to be read

Argument 3

Value to be written to key

Argument 4

Top level tree. This may be either 'HKEY_CURRENT_USER' or
'HKEY_LOCAL_MACHINE' or their respective abbreviations HKCU and HKLM. Note
that you must have administrator rights to write to the HKEY_LOCAL_MACHINE tree.

Return Value

Returns one of three string values as defined below:

Value Meaning

'Ok' Function executed successfully

'WriteFailed' Could not write that value

'InvalidTreeName' Arg 4 invalid.

 Commands 127

XCursor

No Arguments

Return type: real

Returns the horizontal position of the graph measurement cursor. If there is no graph open
or cursors are not enabled, the function returns 0.

XDatum

No Arguments

Return type: real

Returns the horizontal position of the graph reference cursor. If there is no graph open or
cursors are not enabled, the function returns 0.

XFromY

Arguments:

Type: real real real

Description: input vector Y value Interpolation order
(1 or 2)

Compulsory: Yes Yes No

Default: 2

Return type: real array

Returns an array of values specifying the horizontal location(s) where the specified vector
(argument 1) crosses the given y value (argument 2). If the vector never crosses the given
value, an empty result is returned. The sampled input vector is interpolated to produce the
final result. Interpolation order is specified by argument 3.

Note that unlike other functions that use interpolation, XFromY can only use an
interpolation order of 1 or 2. If a value larger than 2 is specified, 2 will be assumed.

XY

Arguments:

Type: real array real array

Description: y vector x vector

Compulsory: Yes Yes

Default:

Return type: real array

Creates an XY Vector from two separate vectors. An XY Vector is a vector that has a
reference. The resulting vector will have y values defined by argument 1and the x values
(i.e. its reference) of argument 2.

YCursor

No Arguments

Return type: real

Returns the vertical position of the graph measurement cursor. If there is no graph open or
cursors are not enabled, the function returns 0.

128 Commands

YDatum

No Arguments

Return type: real

Returns the vertical position of the graph reference cursor. If there is no graph open or
cursors are not enabled, the function returns 0.

YFromX

Arguments:

Type: real real real

Description: input vector X value Interpolation order
(1 or greater)

Compulsory: Yes Yes No

Default: 2

Return type: real array

Returns an array of values (usually a single value) specifying the vertical value of the
specified vector (argument 1) at the given x value (argument 2). If the given x-value is out
of range an empty result is returned. The sampled input vector is interpolated to produce the
final result. Interpolation order is specified by argument 3.

 Commands 129

Chapter 3. Command Reference

Notation

Symbols used:

Square brackets: []

These signify a command line parameter or switch which is optional.

Pipe symbol: |

This signifies either/or.

Ellipsis: ...

This signifies 1 or more optional multiple entries.

Fonts

Anything that would be typed in is displayed in a fixed width font.

Command line parameters are in italics.

Case

Although upper and lower cases are used for the command names, they are NOT in fact
case sensitive.

Examples

OpenGroup [/text] [filename]

Both /text (a switch) and filename (a parameter) are optional in the above

example.

So the following are all legitimate:

OpenGroup

OpenGroup /text

OpenGroup run23.dat

OpenGroup /text output.txt

DelCrv curve_number...

1 or more curve_number parameters may be given.

So the following are all legitimate:

DelCrv 1 2 3

DelCrv 1

Command Reference

Abort

Aborts the current simulation. Abort performs the same action as Pause followed by Reset.
It stops the current run and then deletes all data associated with it except for any simulation
vectors.

Note that this command can only be executed by an assigned key or menu with the direct
execution option specified.

130 Commands

About

About

Displays the about box which provides version and copyright information.

AddCurveMarker

 AddCurveMarker curve-id division x-position y-position label [length [angle]]

Adds a curve marker to the currently selected graph sheet. A curve marker is a graph
annotation object and its purpose is to label a curve for the purposes of identification or to
highlight a feature. See “Graph Objects” for more information.

curve-id Id for curve to which marker will be attached.

division Division of curve if curve-id refers to a curve group created by a multi-

 step run. Divisions are numbered from 0 up to 1 minus the number of

 curves in the group. For single curves set this to zero.

x-position X-axis location of marker.

y-position Y-axis location of marker. This is only used if the curve is non monotonic

 and has more than one point at x-position. The marker will be placed at

 the point on the curve with the y-axis value that is nearest to y-

position.

label Label for marker. This may use symbolic values enclosed by '%'.

length Length of marker line in view units. If omitted length defaults to 0.1.

angle Angle of the marker line in the view co-ordinate. Default is 45°

AddFreeText

 AddFreeText [/font font-name] [/align align] text [x-pos [y-pos]]

Adds a free text item to the currently selected graph sheet. Free Text is a graph annotation
object.

font-name Name of font object to be used for text object. This must either be a
 standard font (as listed in menu File|Options|Font...) or a font created
with the CreateFont command.

align Integer that specifies alignment of text. Possible values:

 0 Left bottom

 1 Centre bottom

 2 Right bottom

 4 Left base line

 5 Centre base line

 6 Right base line

 8 Left top

 9 Centre top

 10 Right top

 12 Left middle

 13 Centre middle

 14 Right middle

 text The text to be displayed

 x-pos x-co-ordinate of the text in view units. Default = 0.5

 Commands 131

 y-pos y-co-ordinate of the text in view units. Default = 0.5

AddGraphDimension

AddGraphDimension [/vert] [/label label] curve-id1 [pos1 [curve-id2 [pos2]]]

Adds a dimension object to a graph. The dimension object is not yet supported by the GUI.

/vert If present, a vertical dimension is displayed, otherwise it will be
 horizontal.

label Text to add to the dimension object

curve-id1 Id of first curve

pos1 Initial position on curve of dimension. X value if horizontal, otherwise a
 Y value

curve-id2 Id of second curve

pos2 Initial position on second curve of dimension. X value if horizontal,
 otherwise a Y value

AddLegend

 AddLegend [/autoWidth] [/font fontName] [label [x-pos [y-pos [width [height]]]]]

Adds a legend box to the currently selected graph. A “Legend Box” is a graph annotation
object which consist of a rectangle containing a list of curve labels

/autoWidth If specified, the width of the box will be adjusted automatically
according to its contents.

fontName Specifies a font to use for the text contained in the box. Must be
either a standard font name or one created using the CreateFont
command.

label This is the text that will copied to each entry. To be meaningful
this must contain a symbolic value enclosed by '%'. The default
value for label if omitted if %DefaultLabel%. This will result in
the curves name and measurements being displayed in the legend
box. Some alternatives are:

 %Curve:Label%
 displays just the label with no measurements

 %Curve:Measurements%
 displays just the measurements

 %Curve%
 displays the curve's ID only

 %Curve:Label%/%Curve:YUnit%
 displays the curve name and y-axis units

x-pos X position of box in view units. If the value is 1.0 or greater, the box
will be placed such that its left hand edge is to the right of the
graph's grid area. Default = 0

y-pos Y position of box in view units. If the value is 1.0 or greater, the box
will be placed such that its bottom edge is above the graph's grid
area. Default = 1

width Physical width of box in mm. (For CRT monitors this won't be
exact. They are typically assumed to be 75 pixels/inch so 1mm is
approx. 3 pixels). Note that this value will be ignored if /autowidth
is specified. Default = 50.

height Physical height of box in mm. (See notes above wrt CRT
monitors)

132 Commands

AddLegendProp

AddLegendProp curve_id property_name property_value

Adds a property to a graph legend. Legend properties are generally used to display
measurement information for a curve. Their name and value is displayed below a curve's
legend (or label).

curve_id Curve Id. Curve id is returned by the functions
GetSelectedCurves, GetAxisCurves and GetAllCurves

 property_name Name of property. May be any string and may contain spaces.

property_value Value of property. May be any string and may contain spaces.

Example

The following is extracted from the script curve_duty which displays duty cycle for
selected curves.

let curves=GetSelectedCurves()

let numCurves = length(curves)

...

for idx=0 to numCurves-1

Script lines to retrieve duty cycle ...

 AddLegendProp {curves[idx]} "Duty cycle" {duty_cycle}

next idx

A typical result is displayed above. In this example the property name is "Duty Cycle" and
its value is "50.1619%"

AddTextBox

 AddTextBox [/font font-name] text [x-position [y-position]]

Adds a Text Box to the currently selected graph. A text box is an item of text enclosed by a
border.

font-name Name of font to be used for text. This must either be a built in font or one
 created using CreateFont.

text Text to be displayed in the box. This may use symbolic value enclosed
 by '%'. The following are meaningful for Text Box objects:

%Date% The date when the object was created

%Time% The time when the object was created

%Version% The name and current version of the program

The x-position The x position of the box in view units

y-position The y position of the box in view units

 Commands 133

Arguments

Arguments [argument_list]

Declares arguments for a script. Full details for passing arguments to scripts are given in
“Script Arguments”.

 argument_list List of arguments to be used in the script in the order in which they
are passed. Arguments that are passed by reference should be
prefixed with '@'.

Cd

Cd [directory_name]

Cd is almost identical to the DOS cd or chdir commands. It changes the current directory to
that specified. Unlike the DOS command, however, it will also change the current drive if it
is included in the directory name. If no directory name is specified, the current directory
will be displayed.

ChooseColour

ChooseColour

Opens colour selection dialog box.

ClearMessageWindow

ClearMessageWindow

Clears the command shell message window

Close

Close graph

Closes the selected graph window.

CloseGraphSheet

CloseGraphSheet

Closes the current tabbed sheet in the selected graph window. If the window has only one
sheet, the whole window will be closed.

ClosePrinter

ClosePrinter [/abort]

ClosePrinter is one of a number of commands and functions used for non-interactive
printing. This is explained in “Non-interative and Customised Printing”. Printing sessions
are started with OpenPrinter after which print output commands such as PrintGraph may
be called. The session is terminated with ClosePrinter which actually initiates the printing
activity. If the /abort switch is specified, the print job is terminated and no print output will
be produced.

134 Commands

See also

NewPrinterPage

OpenPrinter

PrintGraph

GenPrintDialog

GetPrinterInfo

CollectGarbage

 CollectGarbage

Deletes temporary vectors. This command is only needed for scripts running endless or
very long loops. The simulator creates temporary vectors when calculating vector
expressions. These do not get deleted until control is returned to the command line. In the
case of a script that calculates many expressions, it is possible for the memory used by the
temporary vectors to become excessive. Calling CollectGarbage at regular intervals will
resolve this problem.

CreateFont

CreateFont font-name font-base

Creates a new font object based on an existing font. The name given to the font can be used
to specify the font for some graph annotation objects. Once CreateFont is called, its name
will be displayed in the list displayed when the File|Options|Font... menu is selected.

font-name Name of new font

font-base Name of font to be used to set initial properties. May be any font listed in
 the menu File|Options|Font… or one of the following: Standard,
 StandardMedium or StandardLarge.

CreateGroup

CreateGroup [/title title] label

Creates a data group. All vectors (or variables) are organised into groups. Each simulation
run creates a new group and all data for that simulation is placed there.

label Base name of group. The actual group name will be appended by a number to
 make it unique. The new group will become the current group. To find the name
 actually used, you can call the function Groups immediately after calling this
 command. The first element of Groups (i.e. (Groups())[0]) is always the current
 group.

title Optional title. This will be displayed in the box displayed when selecting a
 Change Data Group... menu. It is also returned by a call to Groups(‘title’)

CreateToolBar

 CreateToolBar window_name toolbar_name [caption [visibility]]

Creates a new empty toolbar. To add buttons to the toolbar use command “DefineToolBar”

window_name Name of window where toolbar is to reside. Must be one of:

CommandShell Command shell window

Graph Graph windows
toolbar_name User assigned name for toolbar. You can use any name that

doesn’t clash with a pre-defined toolbar name as defined in the
table below. The name must not contain spaces.

 Commands 135

Pre-defined toolbars:

CommandShellMain Command Shell toolbar
GraphMain Graph window toolbar

This name is used to reference the tool bar in the DefineToolBar and SetToolBarVisibility
commands.

Caption Optional caption for toolbar. This is displayed in the caption bar of
the toolbar that is visible when the toolbar is ‘undocked’.

Visibility Specifies when the tool bar is visible. This can be subsequently
changed using the SetToolBarVisibility command. Possible values
are:

always toolbar is always visible

never toolbar is never visible

CreateToolButton

 CreateToolButton [/toggle] [/class class_name] name graphic [hint]

Creates or redefines a tool bar button. This command creates the properties of the button
but not the command it executes when it is pressed. To define the command, use
DefButton.

/toggle If specified, the button will have a toggle action and will have two
commands associated with it. One command will be executed
when the button is pressed and another when it is released. The
‘Wire’ pre-defined button is defined in this manner

class_name This is used with the function GetToolButtons to select buttons
according to their function. Set this value to ‘component’ if you
wish the button to be displayed in the GUI which selects
component button.

name Name of button. This may be one of the pre-defined types
described in “DefineToolBars” in which case this command will
redefine its properties. You may also specify a new name to create
a completely new button.

graphic Graphical image to be displayed on the button. This may be one of
the pre-defined images listed in DefineToolBar or you may use a
user defined image specified in a file. The file must be located at
the following location:

Windows: …\support\images

where …\ is the top level directory in the tree.

The file may use windows bitmap (.bmp), portable network
graphic (.png) or JPEG (.jpg) formats. The PNG format supports
masks and this format must be used if transparent areas are needed
in the graphic. If no mask is found in the graphic file, one will be
created which will make the area outside the outer perimeter
transparent.

hint Text that describes the operation of the button. This will be
displayed when the user passes the mouse cursor over the button.

 CursorMode

CursorMode on | off |toggle | step | stepref | stepShift | stepRefShift

Switches cursor mode of selected graph. In cursor mode, two cursors are displayed
allowing measurements to be made. See the User's manual for more information on cursors.

on Switch cursors on

136 Commands

off Switch cursors off

toggle Toggles on|off

step Step cursor to next curve

stepref Step reference cursor to next curve

stepShift Steps cursor to next curve within a group. Curves are grouped - for
example - for Monte Carlo runs.

stepRefShift Steps reference cursor to next curve within a group. Curves are
grouped - for example - for Monte Carlo runs.

Curve

Curve [/autoXlog]

[/autoYlog]

[/autoAxis

[/axisId axis_id]

[/bus type]
[/coll]
[/dig]
[/icb clipboard_index]
[/loglog]
[/name curve_name]
[/newAxis]
[/newGrid]
[/newSheet]
[/newWindow]
[/select]
[/title title]
[/xauto]
[/xdelta x_grid_spacing]
[/xl x_low_limit x_high_limit]

[/xlabel x_label_name]
[/xlog]
[/xunit x_unit_name]
[/yauto]
[/ydelta y_grid_spacing]
[/yl y_low_limit y_high_limit]
[/ylabel y_label_name]
[/ylog]
[/yunit y_unit_name]

[y_expression]
[x_expression]

Curve can be used to add a new curve to an existing graph created with Plot or to change
the way it is displayed.

/autoXlog Only effective when graph sheet is empty. If specified, the x- axis
will be logarithmic if the x-values are logarithmically spaced.

/autoYlog Only effective when graph sheet is empty. Same as /autoxlog
except that if x-values are logarithmically spaced, the Y axis will
be logarithmic

/autoAxis If specified, the new curve will be added to a compatible axis
 according to its physical units i.e Voltage, Current etc. The rules
 used are as follows:

 If the currently selected axis or grid (shown by black axis line) has
 the same units as curve to be plotted or if it has undefined units
 (designated by a '?' on label), that axis will be used.

 Commands 137

 If any other axis or grid has compatible units (i.e same as curve or
 undefined) that axis will be used.

/axisId axis_id If specified, the new curve will be added to a y-axis with the id
specified by axis_id. Axis id is returned by the functions
GetAllYAxes, GetCurveAxis and GetSelectedYAxis. These are
documented in the “Script Reference Manual”. This is available as
a PDF file on the install CD. A hardcopy version is also available
for an additional charge.

/bus type If specified, the new curve will be plotted on a digital axis and will
be plotted as a bus curve. type may be ‘hex’, ‘dec’ or ‘bin’
specifying hexadecimal, decimal or binary display respectively.

/coll Does nothing. For compatibility with version 3.1 and earlier.

/dig If specified, new curve will be plotted on new digital axis. Digital
axes are stacked on top of main axes and are sized and labelled
appropriately for digital waveforms.

/icb clipboard_index Specifies the internal clipboard as the source of the curve data.
clipboard_index is a value of 0 or more that indicates which curve
in the internal clipboard is to be used. The function may be used to
determine the number of curves available. The maximum
acceptable value for clipboard_index is thus one less than the
value returned by HaveInternalClipboardData.

/loglog Only effective when graph sheet is empty. Forces both y and x
axes to be

/name curve_name If specified, curve will be named curve_name.

/newAxis If specified, the new curve will be plotted on a new y-axis.

/newGrid If specified, the new curve will be plotted on a new grid.

/newSheet Does nothing. Included for compatibility with Plot command.

/newWindow Does nothing. Included for compatibility with Plot command.

/select If specified, the new curve will be selected.

/title title Does nothing. Included for compatibility with Plot command.

/xauto Flag. Use automatic limits for x-axis. If this appears after a /xl
specification /xauto will override it and vice-versa.

/xdelta Specify spacing between major grid lines on x-axis. Followed by...

x_grid_spacing Real. For default spacing use '0'.

/xl Use fixed limit for x-axis. Followed by ...

x_low_limit Real. Lower limit of x-axis.

x_high_limit Real. Higher limit of x-axis.

/xlabel Specify label for x-axis. Followed by...

x_label_name Text String. Label name. If it contains spaces, whole string must
be enclosed in quotes ("").

/xlog Only effective when graph sheet is empty. Forces logarithmic x-
axis.

/xunit Specify units for x-axis (Volts, Watts etc.). Followed by ...

x_unit_name Text string. Unit name. If it contains spaces, the whole string must
be enclosed in quotes (""). You should not include an engineering
prefix (m, K etc.).

/yauto Flag. Use automatic limits for y-axis. If this appears after a /yl
specification /yauto will override it and vice-versa.

138 Commands

/ydelta Specify spacing between major grid lines on y-axis. Followed by...

y_grid_spacing Real. For default spacing use '0'.

/yl Use fixed limit for y-axis. Followed by ...

y_low_limit Real. Lower limit of y-axis.

y_high_limit Real. Higher limit of y-axis.

/ylabel Specify label for y-axis. Followed by...

y_label_name Text String. Label name. If it contains spaces, whole string must
be enclosed in quotes ("").

/yunit Specify units for y-axis. Followed by ...

y_unit_name Text string. Unit name. Other comments as for x unit name.

y_expression Text string. Expression describing curve to be added to graph.

x_expression Text string. Expression describing x values of curve defined by y
expression. If omitted, reference of y_expression will be used.

CurveEditCopy

 CurveEditCopy curve-id1 [curve-id2 ...]

Copy specified curves to the internal clipboard. Curves so copied may be subsequently
plotted using the command xxxxxx with the /icb switch.

curve-idn Id of curve. A number of functions return this value including
Default_XREF_styleparatext(page 78).

See Also

Default_XREF_styleparatext

Default_XREF_styleparatext

DefButton

 DefButton [/immediate] button_name command [up_command]

Defines the command executed when a button is pressed.

/immediate If specified, the command will be enabled for immediate
execution. That is the command will be executed immediately
even if another command - such as a simulation run - is currently
in progress. This will only be accepted when the command
specified is one of a small number of built-in command enabled
for immediate execution. For the list of commands, see
“DefMenu”. You may not call a script if immediate execution is
specified.

button_name Name of button. Either a pre-defined button as listed in
“DefineToolBar” or a new button created with CreateToolButton”

command Command to be executed when the button is pressed.

DefItem

Defitem /bypos menuname itemname [command_string [option_flag [when_to_enable]]]

Defitem is used to define custom menu items. It can also be used to delete menu items.

DefItem is included for backward compatibility. New applications should use DefMenu
which can also define multi level menus and popup menus. To delete menus, use DelMenu.

/bypos Only effective for deleting menu items. (If command string is
absent, the menu item is deleted - see below). If this switch is

 Commands 139

specified the item is identified by its order in the menu list with the
first item being '0' .In this case itemname will be assumed to be a
number. Note that deleting by position is the only method of
deleting menu separators.

menuname The name of the menu as it appears on the menu bar. If the menu
name already exists the new menu item will be added to it. If not a
new menu will be created. Underlined characters - as used to
signify a keyboard selection letter - should be preceded with a '&'.

itemname The name of the item in the menu. If it already exists its function
will be redefined. If not a new one will be created at the bottom of
the list. If the /bypos switch is specified, itemname should be a
number.

command_string A command line command or commands to be executed when the
menu item is selected. Multiple commands must be separated by
semi-colons (';'). Unless the command string has no spaces, it must
wholly enclosed in double quotation marks ("). If omitted the
menu item will be deleted.

option_flag A number between 0 and 5 to specify the manner in which the
command is executed. These are as follows:

0. Default. Command is echoed and executed. Any text already in command line is
 overwritten.

1. Command is placed in command line but is not executed. Any text already in
 command line is overwritten.

2. Command is appended to existing text in command line then executed.

3 Command is appended to existing text in command line but is not executed.

4. Same as 0.

5. Immediate mode. Command is executed immediately even if another operation -
 such as a simulation run - is currently in progress. For other options the command
 is not executed until the current operation is completed. Only a few commands
 can be assigned with this option. These are:
 DefItem
 DefKey
 Echo
 Let
 Pause
 Quit
 ScriptAbort
 ScriptPause
 ScriptResume
 Shell

6. Item is a separator i.e. a line separating menu items in order to group them
 together.

when_to_enable A boolean expression specifying under what circumstances the menu
should be enabled. (The menu text turns grey when disabled). If omitted the menu will
always be enabled. See DefMenu for further details.

If only the menuname and itemname are specified, the menu item of that description will be
deleted.

Examples

DefItem &File "Edit File" "shell { 'notepad'&' '&getfile('All

Files*') }"

defines a new menu item to call the notepad editor.

DefItem &File "Edit File"

deletes the menu item specified

140 Commands

DefItem /bypos &File 6

Deletes the seventh item in the &File menu

DefItem &File " " " " 6

Adds a separator (a horizontal line) to the bottom of the &File menu

See Also:

User Defined Key and Menu Definitions.

DefineToolBar

 DefineToolBar toolbar_name button_defs

Defines the buttons for a user defined toolbar created using CreateToolBar. To define the
buttons for a pre-defined toolbar, the associated option setting must be set using the
command Set.

toolbar_name Name of toolbar. This must be a toolbar created using
CreateToolBar .

button_defs Semi-colon delimited list of button names to add to the toolbar.
Buttons may either be one defined using CreateToolButton or one
of the pre-defined types shown in the table below. The ‘-’
character may also be used to specify a spacer.
Pre-defined buttons:

Button Name Graphic Function
AddCurve newcurve.bmp Add Curve
AddFourier newfourier.bmp Fourier...
CalcAveragePower avg.bmp Display Average

Power/Cycle
CalcFall falltime.bmp Display Fall Time
CalcHighPass3db 3dbhighpass.bmp Display -3dB Point

(High Pass)
CalcLowPass3db 3dblowpass.bmp Display -3dB Point

(Low Pass)
CalcRise risetime.bmp Display Rise Time
CalcRMS rms.bmp Display RMS/Cycle
Capacitor cap.bmp Place Capacitor
Copy copy.bmp Duplicate
Delete erase.bmp Cut
DeleteAxis delgrid.bmp Delete Axis/Grid
DeleteCurve delete.bmp Delete Curve
GraphClose fileclose.bmp Close Graph
GraphOpen fileopen.bmp Open Graph
GraphSave filesave.bmp Save Graph
HideCurves hide.bmp Hide Selected

Curves
MoveCurve movecurve.bmp Move Curve to

Selected Axis/Grid
NewAxis newaxis.bmp New Axis
NewGrid newgrid.bmp New Grid
Options options.bmp Options
Print print.bmp Print
ShowCurves show.bmp Show Selected

Curves
SimPause pause.bmp Pause Simulation
SimRunNetlist run.bmp Run Netlist
SimRunSchem run.bmp Run Schematic
TitleCurve curvetitle.bmp Change Curve

Name
UndoZoom undo.bmp Undo Zoom
ZoomFull zoomfull.bmp Fit Window
ZoomIn zoomin.bmp Zoom In
ZoomOut zoomout.bmp Zoom Out
ZoomRect zoomrect.bmp Zoom Box
ZoomXAuto zoomwidth.bmp Fit Width
ZoomYAuto zoomheight.bmp Fit Height

The graphic images for all pre-defined buttons are built-in to the program, but the image
files from which they were created can be replaced in the \support\images folder..

 Commands 141

See Also

DefButton, SetToolBarVisibility, GetToolButtons

142 Commands

DefKey

DefKey Key_Label Command_string [option_flag]

DefKey is used to define custom key strokes.

Key_Label Code to signify key to define. See table below for list of possible
labels. All labels may be suffixed with one of the following:

:GRAPH Key defined only when a graph window is currently
active

:SHELL Key defined only when the command shell is
currently active.

If no suffix is provided the key definition will be active in all windows.

Command_string A command line command or commands to be executed when the
specified key is pressed. Multiple commands must be separated by
semi-colons (';'). Unless the command string has no spaces, it must
wholly enclosed in double quotation marks (").

option_flag A number between 0 and 5 to specify the manner in which the
command is executed. These are as follows:

0. Default. Command is echoed and executed. Any text already in command line is
 overwritten.

1. Command is placed in command line but is not executed. Any text already in
 command line is overwritten.

2. Command is appended to existing text in command line then executed.

3. Command is appended to existing text in command line but is not executed.

4. Same as 0.

5. Immediate mode. Command is executed immediately even if another operation -
such as a simulation run - is currently in progress. For other options the command is not
executed until the current operation is completed. Only a few commands can be assigned
with this option. These are

DefItem
DefKey
Echo
Let
Pause
Quit
ScriptAbort
ScriptPause
ScriptResume
Shell

Note, the Let command can be used to set a global variable which can then be tested in
running script. This is a convenient method of providing user control of script execution.

Valid key labels:

Function keys :

F1

F2

F3

F4

F5

F6

F7

 Commands 143

F8

F9

F10

F11

F12

INS Insert key

DEL Delete key

HOME Home key

END End key

PGUP Page up key

PGDN Page down key

LEFT ←

RIGHT →

UP ↑

DOWN ↓

TAB Tab key

BACK Back space

ESC Escape key

NUM1 Keypad 1

NUM2 Keypad 2

NUM3 Keypad 3

NUM4 Keypad 4

NUM5 Keypad 5

NUM6 Keypad 6

NUM7 Keypad 7

NUM8 Keypad 8

NUM9 Keypad 9

NUM0 Keypad 0

NUM* Keypad *

NUM/ Keypad /

NUM+ Keypad +

NUM- Keypad -

NUM. Keypad .

_SPACE Space bar (must always be shifted - see below)

All letter and number keys i.e.

A to Z and 0 to 9 referred to by letter/number alone.

Shifted keys

Any of the above prefixed with any combination of 'S' for shift, 'C' for control or 'A' for alt.
Note that in windows, the right hand ALT key performs the same action as CONTROL-
ALT.

144 Commands

Notes

Unshifted letter and number key definitions will not function when a text edit window is
active. Space bar definitions must always be shifted.

The same codes can be used for menu short cuts. See DefMenu command.

Examples

The mc_histo script uses the following command:

DefKey CQ "Let /ne global:abortHisto = 1" 5

This defines control Q to set a global variable to 1 to force abort on the histogram process.
It resets the key as follows:

DefKey CQ ""

The definition for F12 to zoom in a graph is

DefKey F12:GRAPH "SizeGraph 0 0 0.8 0.8" 4

This definition only functions when a graph window is active.

Note that the key definition will be lost when Pulsonix Spice is quitted. To make a key or
menu definition permanent you can place the command to define it in the startup file. To do
this, select command shell menu File|Scripts|Edit Startup and add the line above.

DefMenu

DefMenu [/immediate] [/shortcut key_code] [/insert] [/append] menuname command_string

when_to_enable

Defines custom menu. Supersedes DefItem

/immediate Immediate mode. Command is executed immediately even if
another operation - such as a simulation run - is currently in
progress. For other options the command is not executed until the
current operation is completed. Only a few commands can be
assigned with this option. These are

DefItem
DefKey
Echo
Let
Pause
Quit
ScriptAbort
ScriptPause
ScriptResume
Shell

/shortcut key_code Specify key or key combination to activate menu. Key description
is placed on right hand side of menu item. For list of possible
values see DefKey command. Note that DefKey has precedence in
the event of the key or key combination being defined by both
DefKey and DefMenu.

/insert Command isn't executed but the text of the command is placed in
the command line overwriting any existing text.

/append Command isn't executed but the text of the command is placed in
the command line appended to existing text

menuname Composed of strings separated by pipe symbol : '|'. First name
must be one of the following:

SHELL Command shell menu
GRAPH Graph popup menu

 Commands 145

LEGEND Popup menu in graph "legend panel" (Between
toolbar and main graph drawing area)

For SHELL menu, this must be followed by two or more names separated by '|' . The first is
the menu name as it appears on the menu bar. The second can be the name of a menu item
(which is actioned when selected) or a sub menu containing menu items or further sub
menus. Sub menus can be nested to any level.

GRAPH and LEGEND must be followed by at least one name. Sub menus may also be
defined for these.

To define a menu separator use the item text "-"

Note that if any of the menu name contains spaces it must be enclosed in quotation marks.

See examples below.

when_to_enable A boolean expression specifying under what circumstances the menu
should be enabled. (The menu text turns grey when disabled). If omitted
the menu will always be enabled. The expression may contain the
following values:

GraphOpen TRUE when there is at least one graph window open.

SimPaused TRUE when the simulator has been paused.

SimRunning TRUE when the simulator is running.

CircuitLoaded TRUE when a circuit has been loaded to the simulator. (This happens
 when ever a simulation is run. A circuit can be unloaded with the Reset
 command).

LiveMode TRUE when a command has not completed.

Never Always FALSE i.e menu permanently disabled.

These values can be combined with the operators:

&& logical AND

|| logical OR

== equals

!= not equal

! NOT

Parentheses may also be used.

Note that this expression is not related to vector expressions or the expressions that can be
used in netlists or the command line.

Examples

The following are definitions for some of the standard menus. You can see them all by
executing the ListStdMenu command

Print graph command shell menu

DefMenu "Shell|&File|&Print ..." "gen_print /ne" "GraphOpen && !LiveMode"

New Axis on the graph popup menu.

DefMenu "Graph|New A&xis" "NewAxis /ne" "!liveMode"

Separator in graph popup

DefMenu "Graph|-"

146 Commands

Del

 Del filename

Deletes the specified file. Wildcards may be used for filename e.g. *.*. ‘*’ matches any
sequence of zero or more characters. ‘?’ matches a single character. Any file matching the
specification will be deleted.

DelCrv

DelCrv curve_id ... |curve name ...

Deletes the specified curve or curves on the selected graph. curve_id is returned by the
functions GetSelectedCurves, GetAxisCurves and GetAllCurves.

Optionally a curve name may be specified. This must be the whole text of the curve legend.
It is the value returned by the GetCurves function.

DeleteAxis

DeleteAxis axis_id

Deletes the specified axis.

axis_id Axis id as returned by functions GetAllYAxes ,
GetSelectedYAxis or GetCurveAxis.

Note that an axis may only be deleted if it is empty i.e. has no attached curves. Also the
main axis may not be deleted.

DeleteGraphAnno

 DeleteGraphAnno object-id

Deletes a graph annotation object such as a curve marker or legend box. See “Graph
Objects” for details on graph annotation objects.

object-id Id of object to be deleted.

DelGroup

 DelGroup [/all] [/cleanup] [/nodelete] groupname2 ...

/all If specified all groups except the user group are destroyed.

/noDelete Inhibits delete of associated temporary data file. This file will only
be deleted any way if the option variable DataGroupDelete is set to
OnDelete.

/cleanup Specify this switch if the associated data file is going to be reused
as it may speed up the read operation especially if the data was
created by a simulation that was paused. If the file will be deleted
then this switch has no benefit but will do no harm other than to
slow the execution of this command a little.

Deletes specified groups.

See Also

CreateGroups

Function “Groups”

 Commands 147

DelLegendProp

DelLegendProp curve_id property_name

curve_id Id of curve which possesses property. Curve id is returned by the
functions GetSelectedCurves, GetAxisCurves and GetAllCurves

property_name Name of property to be deleted. The function
GetLegendProperties returns legend properties owned by a
specified curve.

DelMenu

DelMenu [/bypos position] menuname

Deletes specified menu

position The menu to be deleted is identified by its position. The first item
in the menu is at position zero.

menuname Composed of strings separated by pipe symbol : '|'. First name
must be one of the following:

SHELL Command shell menu
GRAPH Graph popup menu
LEGEND Popup menu in graph "legend panel"

 The remaining strings identify the menu and item names. See
DefMenu for details on menu names.

Discard

 Discard [groupname]

Frees up memory used for vectors. This does not destroy the vectors, just removes any
copies that reside in RAM. The data is always stored on disc and can be recovered to RAM
when needed.

groupname Name of group whose data is to be discarded. Use current group if
omitted.

Notes

It is rare that this command is needed but mat be useful if you are running long simulations
and the data generated is so large that a great deal of disk swapping is taking place.

The vectors created by the simulator are initially stored in a file. If they are needed - usually
for plotting a graph - the data is copied to memory. Once the data has been copied to
memory, it will stay there until the group to which the vector belongs is destroyed. Simply
closing the graph that used the data will not free up the memory as it is assumed that the
data may be needed again and the process of reading from the disk can be time consuming.
If the data is very large it will consume a lot of memory which can have adverse
consequences.

The discard command deletes the data stored in memory for all vectors in the specified
group. It does not delete the vectors altogether as they are still stored on disc in the
temporary file. After discarding a group, it is still possible to plot all vectors that it
contains.

Display

Display [groupname1 [groupname2 ...]]

Displays list of all vectors in specified groups or current group by default.

148 Commands

See Also

Expressions

Echo

 Echo [/file|/append filename] /page /box text

Echoes text to the message window or to a file

/file filename If present text is output to filename. If filename exists, it is
overwritten

/append filename If present text is appended to filename. If filename does not exist,
it is created.

/page Prefixes output with a ASCII form feed character

/box Text is output inside a box composed of asterix characters. This is
useful for titles and headings. Currently only works correctly when
used with /file or /append.

EditColour

 EditColour colour-name colour-spec

Changes the spec for the named colour object.

colour-name Name of colour object. This can be any of the names returned by
the GetColours() function. (These are listed when the menu
File|Options|Colour... is selected.)

colour-spec Text string that defines the colour. The functions GetColourSpec()
and SelectColourDialog() return colour spec values.

EditFile

EditFile filename

Opens an external text editor to edit specified file. The path of the text editor may be
specified by the "Editor" option which may be set in the File Locations tab of the options
dialog box. (File|Options|General...). This is "notepad" by default.

EditFont

 EditFont font-name font-spec

Changes the spec for the named font object.

font-name Name of font object. This can be any of the names returned by the
GetFonts() function. (These are listed when the menu
File|Options|Font... is selected.)

font-spec Text string that defines the font. The functions GetFontSpec and
SelectFontDialog return font spec values.

ExecuteMenu

 ExecuteMenu menu-item

Executes the specified menu.

menu-item Menu definition as described in DefMenu command.

Execute

Execute command

Run the script or command command.

Scripts are usually run by simply entering their name in the same way as a command is
entered. However, the script is executed slightly differently if run using the Execute

 Commands 149

command. If a script is called from another script in the normal way, the called script is
read in and parsed before the main script is executed. If the Execute command is used, the
called script is not read in until and unless the Execute command is actually executed. This
has two main applications.

1. The name of the called script is not known initially. This is the case with the menu
item File|Script|Run Script... . The script name is selected from a dialog box. The
Execute command is used to implement this menu item.

2. The called script is very long and is not always called by the calling script. It may
take some time to read in and parse the called script. This time would be wasted if
the script is not actually called.

Avoid using Execute if a script is called within a loop. The script would be read in and
parsed each time around the loop which is very inefficient.

Focus

Focus [/named window_name] [graph]

/named window_name If specified the window of the given name will be given input
focus. The name of the window is the text in the title bar with
"(Selected)" stripped off. Window name is also returned by
GetWindowNames function.

graph Currently selected graph window receives input focus.

See Also

GetWindowNames

FocusShell

 FocusShell

Selects the Command Shell and assigns it keyboard focus.

Font

Font

Opens the font selection dialog box.

GraphZoomMode

GraphZoomMode X|Y

Specifies mode of next mouse zoom operation

X Only X axis will be zoomed

Y Only Y axis will be zoomed

All subsequent zoom operations will be applied to both axes.

Help

Help [/file filename] [/contents] [/context context_id] [topic]

Opens the Pulsonix Spice help system.

filename If specified, help will be obtained from filename. Otherwise help
file will be SIMULATOR.HLP

/contents Display contents page. Overrides /context and topic.

150 Commands

context_id Opens specific topic indentified by an integer. This is used by
some internal scripts but is not supported for user application.

topic If specified, help system will display page relating to topic. If topic
does not exist, a list of available topics will be displayed.

Example:

To display help on the .tran simulator directive type:

Help .tran

HideCurve

HideCurve curve_id

Hides specified curve

curve_id Id of curve to hide. Curve id is returned by the functions
GetSelectedCurves, GetAxisCurves and GetAllCurves

See Also

ShowCurve

HighlightCurve

 HighlightCurve [/clear | /unique] curveId

Highlights the selected curve. A curve is highlighted by displaying it in a brighter colour
and bringing it to the top - i.e. it is drawn last. Also, highlighted curves are displayed in
increased thickness, the amount determined by the HighlightIncrement option setting.

curveId Id of curve to be highlighted (or unhighlighted if /clear specified)

/clear The specified curve will be unhighlighted.

/unique The specified curve will be highlighted and all others will be
unhighlighted.

Hint

 Hint message

Displays a message box intended to be used to provide hints to the user. The box contains a
check box allowing the user to choose not to receive such hints again.

message Message to be displayed.

KeepGroup

KeepGroup on|off

Switches keep status of current group.

Groups generated by the simulator start with their keep status set to off. This means that it
will automatically be deleted when a certain number (set by the GroupPersistence option)
of new groups are created. If the keep status is set to on then automatic deletion is disabled.
Groups read from a file using OpenGroup start with their keep status set to on.

Let

Let [vector_expression]

Evaluates a vector expression.

vector_expression vector expression to be evaluated. Information on vector
expressions can be found in Expressions.

 Commands 151

To be meaningful vector_expression must contain the assignment operator '=' .

If vector_expression is omitted a list of vectors in the current group will be displayed.

152 Commands

Examples

Create a new vector of name power:

let power = r1#p*(r1_p-r1_n)

Listing

 Listing [/file filename] [/errors] [/append filename]

Displays or outputs to a file a listing of the current netlist.

/file filename Result is written to file of name filename

/append filename Result is appended to file of name filename

ListModels

ListModels filename

Generates a dictionary of all models and subcircuits currently available to the simulator (i.e.
installed with File|Model Library|Add/Remove Libraries see Pulsonix Spice User's
manual). Result is written to filename. A single line will be produced for each model or
subcircuit found containing the device name, its type (npn, jfet, subcircuit etc.) and the
filename in which it was found along with the line number.

ListStdButtonDefs

 ListStdButtonDefs [filename]

Lists the built in toolbar button definitions. These are in the form of the DefButton
command used to create the definition.

filename If specified, the results will written to filename. Otherwise the
results will be displayed in the command shell.

ListStdKeys

ListStdKeys filename

Writes built in key definitions to filename.

ListStdMenu

ListStdMenu filename

Writes the definitions for the built in menu system to filename

LoadModelIndex

LoadModelIndex

Forces model library indexes to be re-checked and loaded. Model library indexes are
initially loaded when Pulsonix Spice starts. If however some additions are made to the
library, it will become necessary to reload them. This command performs that action. Note
the menu Model Library|Re-build Catalog calls this command.

The work of reloading indexes is actually performed in the background so this command
returns immediately even though the process can take several seconds. If you start a
simulation immediately after executing this command, there will be a pause until the reload
is complete.

 Commands 153

MakeAlias

MakeAlias variable

Converts a string variable to an alias.

variable variable to be converted

An alias is a string representing a numeric expression. For more information see Aliases.

MakeCatalog

MakeCatalog outfile_name main_catalog [user_catalog]

This command builds a catalog file for use by the Pulsonix Schematics ‘Insert Part Using
Model’ function. This is normally called "OUT.CAT" and resides in the Pulsonix-Spice
application data folder.

outfile_name File name for catalog. This must be OUT.CAT for use with
browser

main_catalog Main database of parts. This would usually be ALL.CAT which
resides in the Pulsonix Spice support folder.

user_catalog User database of parts. This would usually be called USER.CAT
which resides in the Pulsonix-Spice application data folder.

The MakeCatalog command is one of the components of the Pulsonix Schematics ‘Insert
Parts Using Model’ option. This option requires a catalog file which lists all the models
available to the simulator and for each provides the name of a suitable Pulsonix part, a
category, pin mapping info if relevant, a device model property (e.g. X for subcircuits, Q
for BJT's) and a preferred pathname if there is more than one model of that name. The
MakeCatalog command builds this catalog using the data files main_catalog and
user_catalog to obtain information about known models. For more information refer to the
Pulsonix Spice User's manual.

MakeCollection

MakeCollection [/multiple] name

Makes a group collection. See Accessing Simulation Data for details on collections.

/multiple If specified, a multiple collection will be created otherwise it will
be single. This affects the way graphs are plotted when the /coll
switch is specified for Plot and Curve. When a group is multiple a
separate legend is created for each curve in the collection and they
are plotted using different colours. With single collections, the
curves are all the same colour and a single legend is created for all
of them. Multiple collections are used by the stepped analyses
while single collections are used by Monte-Carlo analysis.

name Name of collection.

MakeTree

 MakeTree path

Creates the specified directory path. Unlike the MD command, MakeTree will create any
subdirectories required to make the whole path.

Mcd

Mcd directory_name

Makes a directory and sets it as current. (Same as Md followed by Cd)

directory_name Name of directory to be created.

154 Commands

Md

Md directory_name

Creates a new directory. Md is similar to the DOS MD and MKDIR commands.

directory_name Name of directory to be created.

MessageBox

MessageBox text [caption]

Displays message box with text text and caption caption.

MoveCurve

 MoveCurve curve_id axis_id

Moves a curve to a new y-axis

curve_id Id of curve as returned by Curve id is returned by the functions
GetSelectedCurves, GetAxisCurves62 and GetAllCurves

axis_id Axis id as returned by functions GetAllYAxes, GetSelectedYAxis
or GetCurveAxis

MoveFile

 MoveFile path-1 path-2

Moves path-1 to path-2.

NewAxis

NewAxis

Creates a new y-axis. This will be initially empty and selected. See Pulsonix Spice User's
manual for more info on multiple y-axes.

NewGraphWindow

NewGraphWindow

Creates a new graph window to which new graphs may be directed.

NewGrid

NewGrid

Creates a new grid. See Pulsoix SpiceUser's manual for more info on axes and grids.

NewPrinterPage

NewPrinterPage

Advances printer to a new page. This may be used for customised or non-interactive
printing. See “Non-interactive and Customised Printing”.

NoPaint

NoPaint

This command has no effect unless executed from within a script. It inhibits all updates to
graphs until script execution is complete. This is useful when a number of operations are
performed on a graph. By calling this command at the start of a script, multiple graph
operations can be performed much faster and more smoothly.

 Commands 155

OpenGroup

 OpenGroup [/text] [/overwrite] [filename]

Reads in a data file.

/text If specified, data file is assumed to be in text format. Otherwise
the file is input as a Pulsonix binary data file as saved by the
SaveGroup command.

/overwrite Forces existing group of the same name to be overwritten. If not
specified, the group being read in will be renamed if a group of the
same name already exists.

filename Name of file to be input. If not specified, an open file dialog box
will be opened allowing the user to choose from available files.

OpenGroup creates a new Group. If /text is not specified then the name of the group will be
that with which it was stored provided the name does not conflict with an existing group. If
there is a conflict the name will be modified to be unique unless /overwrite is specified in
which case the original group will be destroyed. If /text is specified then the group will be
named textn where n is chosen to make the name unique.

OpenPrinter

OpenPrinter [/portrait] [/numcopies num_copies] [/index index] [/title title] [/printer
printer_name]

Starts a print session. This may be used for customised or non-interactive printing.

/portrait If specified, print will be in portrait orientation,
otherwise it will be landscape.

num_copies Number of copies to print.

printer_name Specify printer by name. If omitted, printer will be
defined by its index (see below) or the application
default printer will be used.

index Printer to use. This can be found from the function
GetPrinterInfo If omitted, the application default
printer will be used.

title Title of print job. This is used to identify a print job
and will be displayed in the list of current print jobs
that can be viewed for each installed printer from
control panel. title is not printed on the final document.

OpenRawFile

OpenRawFile [/purge] [/bufsize buffer_size] rawfile [datafile]

Opens a SPICE 3 format ASCII raw file.

/purge If specified, the loaded data group will be treated like a
normal simulation group and will be automatically
deleted after three runs. Otherwise it will not be
deleted unless the user does so explicitly - e.g. by
using the Graphs and Data|Delete Data Group... menu.

/bufsize buffer_size Specifies the percentage proportion of installed RAM
that is used for buffering the data. See Notes below for
more details. Default value is 10 (%).

rawfile Raw file to open.

datafile Pulsonix data file to which data is written - see Notes.
If omitted, a file will be created in the temporary data
directory as specified by the TempDataDir option
setting.

156 Commands

Notes

Note that the data file generated by this command can be reloaded at a later time using the
OpenGroup command (or menu File|Data|load...). By specifying the datafile argument you
can choose the name and location of this file which can be useful for archival purposes.

OptionsDialog

OptionsDialog

Opens the options dialog box. This is the action performed by the menu
File|Options|General.... All option processing is performed directly by this command.

Pause

Pause

Pauses current simulation (if any). Note that this command can only be executed by
assigning it to a key or menu item with the direct execution option specified (option flag 5).
For more information see User Defined Key and Menu Definitions.

A paused simulation can be restarted with the Resume command.

PlaceCursor

PlaceCursor [/main x_main y_main] [/datum x_datum y_datum]

Positions graph cursors if they are enabled.

/main x_main y_main Location of main measurement cursor. Position is
determined by x_main. y_main is only used for non-
monotonic curves (e.g. nyquist plots) where there is
more than one y value for a given x value.

/datum x_datum y_datum Location of reference cursor. Position is determined by
x_datum. y_datum is only used for non-monotonic
curves (e.g. nyquist plots) where there is more than one
y value for a given x value.

Plot

Plot [/xl x_low_limit x_high_limit]
[/yl y_low_limit y_high_limit]
[/xunit x_unit_name]
[/yunit y_unit_name]
[/xlabel x_label_name]
[/ylabel y_label_name]
[/xdelta x_grid_spacing]
[/ydelta y_grid_spacing]
[/title graph_title]
[/xlog]
[/ylog]
[/loglog]
[/new]
[/select]
[/coll]
[/name curve_name]
[/dig]
[/new]
[/newSheet]
[/autoxlog]
[/autoxylog]
y_expression
[x_expression]

 Commands 157

Create a new graph. To modify or add curves to an existing graph, use the Curve
command. If a graph window is already open, a new tabbed sheet will be created within
that window for the new graph unless the /new switch is specified.

/xl Use fixed limit for x-axis. Followed by ...

x_low_limit Real. Lower limit of x-axis.

x_high_limit Real. Higher limit of x-axis.

/yl Use fixed limit for y-axis. Followed by ...

y_low_limit Real. Lower limit of y-axis.

y_high_limit Real. Higher limit of y-axis.

/xunit Specify units for x-axis (Volts, Watts etc.). Followed by ...

x_unit_name Text string. Unit name. If it contains spaces, the whole string must
be enclosed in quotes (""). You should not include an engineering
prefix (m, K etc.) Pulsonix Spice will add this automatically as
appropriate.

/yunit Specify units for y-axis. Followed by ...

y_unit_name Text string. Unit name. Other comments as for x unit name.

/xlabel Specify label for x-axis. Followed by...

x_label_name Text String. Label name. If it contains spaces, whole string must
be enclosed in quotes ("").

/ylabel Specify label for y-axis. Followed by...

y_label_name Text String. Label name. If it contains spaces, whole string must
be enclosed in quotes ("").

/xdelta Specify spacing between major grid lines on x-axis. Followed by...

x_grid_spacing Real. For default spacing use '0'.

/ydelta Specify spacing between major grid lines on y-axis. Followed by...

y_grid_spacing Real. For default spacing use '0'.

/title Specify title of graph. Followed by ...

graph_title Graph title

/xlog Use logarithmic x axis

/ylog Use logarithmic y axis

/loglog Use logarithmic x and y axes. Same as /xlog /ylog.

/new If specified, a new graph window will be opened for the graph.

/select If specified, the new curve will be selected.

/coll If specified, the operation will be repeated for all groups in the
current collection. This is the method by which multiple curves in
a Monte Carlo and step analyses are plotted together.

/name curve_name If specified, curve will be named curve_name.

/dig If specified, the curve will be placed on a digital axis

/new If specified, a new graph window will be opened.

/newSheet If specified, a new empty graph sheet will be created in the current
graph window. No curves will be plotted.

/autoxlog If specified, the x-axis will be logarithmic if the x-values are
logarithmically spaced. See below for details of test for log
spacing.

/autoxylog Same as /autoxlog except that if x-values are logarithmically
spaced, both X and Y axes will be logarithmic

158 Commands

y_expression Text string. Expression describing curve to be added to graph.

x_expression Text string. Expression describing x values of curve defined by y
expression. Default is reference of y_expression.

Curve legends

The name appearing in the graph window will be the text of the expression being plotted.
Sometimes some additional text is appended in parentheses. This is the group name current
when the curve was plotted. A special feature exists to allow this appended text to be
modified. If there is a string variable in the current group named "legend", its text will be
used instead. This facility is used by the parameter stepping feature to label the curve with
the value of parameter used for a particular curve.

/autoxlog and /autoxylog log test

The x-values are deemed to be logarithmically spaced if the first three values satisfy the
following:

1.0000001 > x1*x1/(x0*x2) > 0.9999999

where x0 is first x-value, x1 is the second and x2 is the third. If there are fewer than three
points or any of the values is less than or equal to zero, a linear axis will be selected.

PrintGraph

 PrintGraph [/interactive] [/margin left top right bottom] [/major on|off] [/minor on|off]
[/caption

 caption] [/mono] [dim_left dim_top dim_right dim_bottom]

Prints the current graph sheet.

left top right bottom Page margins in mm.

/major on|off Specify whether major grid lines should be printed. Default is on.

/minor on|off Specify whether minor grid lines should be printed. Default is on.

caption Caption printed at the bottom of the page.

dim_left, dim_top, dim_right, dim_bottom

 Dimensions and position of printed image on page. Values are relative to page size less the
specified margins in units equal to 1/1000 of the page width/height. The default is 0 0
1000 1000 which would place the image to fill the entire area within the margins. 0
500 1000 1000 would place the image at the bottom half of the page. 0 0 2000 1000
would place the left half of the image in the full page while -1000 0 1000 1000 would
place the right half. This allows the printing on multiple sheets. Note that if
 values greater than 1000 or less than 0 are used, part of the printed image will lie in
the margins. This provides a convenient overlap for multiple sheets.

/mono If specified, the graph will be printed in black and white

Quit

Quit

Terminates Pulsonix Spice.

Rd

Rd directory_name

Remove a directory. Rd is similar to the DOS RD and RMDIR commands.

directory_name Name of directory to be removed.

 Commands 159

ReadLogicCompatibility

ReadLogicCompatibility filename

Reads a file to define the compatibility relationship between logic families. For an example
of a compatibility table, see the file COMPAT.TXT which you will find in the SCRIPT
directory. This file is actually identical to the built-in definitions except for the "UNIV"
family which cannot be redefined.

Please refer to the Pulsonix Spice User's manual for full details on logic compatibility
tables.

File format

The file format consists of the following sections:

Header

In-Out resolution table

In-In resolution table

Out-Out resolution table

Header:

The names of all the logic families listed in one line. The names must not use the
underscore ('_') character.

In-Out resolution table:

A table with the number of rows and columns equal to the number of logic families listed in
the header. The columns represent outputs and the rows inputs. The entry in the table
specifies the compatibility between the output and the input when connected to each other.
The entry may be one of three values:

OK Fully compatible
WARN Not compatible but would usually function. Warn user but allow

simulation to continue.
ERR Not compatible and would never function. Abort simulation.

In-In resolution table

A table with the number of rows and columns equal to the number of logic families listed in
the header. Both column and rows represent inputs. The table defines how inputs from
different families are treated when they are connected. The entry may be one of four values:

ROW Row take precedence
COL Column takes precedence
OK Doesn't matter. (Currently identical to ROW)
ERR Incompatible, inputs cannot be connected.

Out-out resolution table

A table with the number of rows and columns equal to the number of logic families listed in
the header. Both column and rows represent outputs. The table defines how outputs from
different families are treated when they are connected. The entry may be one of four values:

ROW Row take precedence
COL Column takes precedence
OK Doesn't matter. (Currently identical to ROW)
ERR Incompatible, outputs cannot be connected.

160 Commands

Redirect

Redirect /err | /out [filename]

Redirects messages (i.e. text which is normally displayed in the message window) to a file.

Filename Name of file to which messages are sent. If not specified messages
are sent to the message window.

One or both of /err or /out must be specified:

/err Specifies that error and warning messages are to be redirected.

/out Specifies that messages other than errors and warnings are to be
redirected.

RegisterDevice

RegisterDevice DLL_name

This is used to register additional simulator devices defined in an external DLL.

RegisterUserFunction

 RegisterUserFunction Function-Name Script-Name [min-number-args] [max-number-args]

Creates a user defined function based on a script.

Function-Name Name of function. This must start with a letter and contain only
letters, digits and underscores. The name must not be one of the
built-in functions.

Script-Name Name of script that will be called to execute function.

min-number-args Minimum number of arguments required by the function. Range 0
- 7. Default=0

max-number-args Maximum number of arguments that may be supplied to the
function. Range 0 - 7. Default=7

Notes

When an expression is evaluated that calls the function defined by this command, the
specified script will be called. The script receives the arguments to the function through its
argument numbers 2-8. (There is a maximum limit of seven arguments). The function's
returned value is the script's first argument passed by reference.

RenameLibs

 RenameLibs [/report] [/check] [/log logfile] filename suffix [catalog-file user-catalog-file]

Runs the rename model utility. This renames models inside installed model files if they are
found to have duplicates. This command is called by the rename_libs script which is
documented in the User's Manual.

filename Name of model library file or file spec to be processed. This may
include '*' or '?' wild card characters. Any models within this file
that have duplicates already installed in the global model library
will be renamed using the suffix supplied.

suffix Suffix applied to duplicate model name.

catalog-file Usually called OUT.CAT. If specified alongside user-catalog-file, any
user association of renamed models will be appropriately modified.

user-catalog-file Usually called USER.CAT. See catalog-file above.

/report If specified a report of progress will be displayed in the command
shell.

 Commands 161

/check If specified a dummy renaming process will be performed. All
reports, logs and messages will be output but no actual renaming
will take place

logfile If specified, all renamed models will be listed in logfile.

RepeatLastMenu

 RepeatLastMenu menuname top-menu-name

Executes the menu most recently selected by the user. The simulator remembers the last
command executed for each top level menu and this menu must be specified with this
command.

menuname Identifies the window type that owns the menu. See DefMenu
command for list of possible values.

top-menu-name The top level menu name. For a fixed menu, this is the name that
appears in the menu bar. For popup menus, the name “$popup$”
must be supplied.

Reset

Reset

Frees memory associated with most recent simulation run.

It is not normally necessary to use this command unless available memory is low and is
needed for plotting graphs or other applications. Note that Reset does not delete the data
generated by a simulation only the internal data structures set up to perform a run. These
are automatically deleted at the beginning of a new run.

RestartTran

 RestartTran new-tran-stop-time

Restarts a transient simulation that had previously run to completion. To work, the most
recent simulation must have been a transient analysis. If another analysis has since been run
or if the analysis has been cleared using the Reset command, this command will be
inoperative.

new-tran-stop-time The restarted run will continue until it reaches this time.

RestDesk

RestDesk

Restores all windows to positions saved with last SaveDesk command.

Resume

Resume

Resumes a previously paused simulation.

Run

 Run [/check] [/an analysis_spec] [/force] [/file] [/nofile] [/options optionsString] [/list
listFile] [/nolist] [/nodata] [/collection collection_name] [/sweep start|continue|finish]
[/append groupname]

 [/label div_label] netlist_name [data_filename]

Runs a simulation on specified netlist.

/check If specified, simulation is not run but netlist is read in and all
checks are performed.

162 Commands

/an analysis_spec If specified, any analysis controls (e.g .TRAN, .AC etc.) in the
netlist are ignored and the control in analysis_spec is executed
instead.

/force data_filename will be overwritten if it already exists without
prompting user. Otherwise a dialog box will be opened allowing
user to select a new file if required.

/file Does nothing. In earlier versions (pre 3.1) this had to be specified
to force simulation data to be output to a file. This is now the
default behaviour. Specify /nofile to force data to be stored in
RAM.

/nofile If specified, simulation data is stored in RAM.

/options optionsString Simulator options settings. optionsString may be anything that can
be placed after a .OPTIONS control. (Must be enclosed in double
quotation marks if optionsString contains spaces).

/list listFile Overrides default name for list file.

/nolist Inhibits creation of list file.

/nodata Only data explicitly specified by .PRINT or .KEEP controls will
be output. Usually all top level data is saved. Equivalent to placing
“.KEEP /nov /noi /nodig” in netlist.

/collection collection_name Attaches group generated by run to collection
of name collection_name. This is now obsolete and may not be
supported in future versions. Collections were used in earlier
versions to group data created by multiple runs such as Monte
Carlo and stepped analyses. These runs now create a single group
containing multi-division vectors.

/sweep May be set to ‘start’, ‘continue’ or ‘finish’. This is used to create
linked runs that save their data to the same group using multi-
division vectors. The first run in such a sequence should specify
‘/sweep start’ while the final run should specify ‘/sweep finish’.
All intermediate runs should specify ‘/sweep continue’. All runs
except the first must also specify ‘/append’ - see below.

/append groupname Append data created to specified group name which would always
be the data group created by the first run in the sequence. ‘/sweep
continue’ or /sweep finish’ must also be specified for this to
function. The data is appended by adding new divisions to existing
vectors so creating or extending a multi- division vector.

/label division_label Used with /sweep to name the division of a linked run.

netlist_name Input netlist filename.

data_filename Specifies path name of file to receive simulation data. If omitted,
the data is placed in a temporary data file.

Notes

The Run command does not run a simulation on the currently open schematic but on the
specified netlist. Normally a run is initiated using the Simulator|Run menu item. This
annotates the schematic then generates the netlist using the Netlist command. Run is then
executed specifying the new netlist.

The Run command may also be used to run a simulation on a netlist generated by hand or
by another schematic editor.

Linking Runs

The data from multiple runs may be linked together in the same manner as multi-step runs
such as Monte Carlo. This makes it possible to develop customised multi-step runs using
the script language. Simple multi-step runs may be defined using the simulator’s built in

 Commands 163

features which cover a wide range of applications. The simulator’s multi-step features
allow the stepping of a single component or a parameter which can define several
components. But it doesn’t allow, for example, a complete model to be changed, or any
kind of topological changes.

The script language may be used to control multiple runs of a circuit with no limit as to the
changes that may be performed between each run. In such situations it is useful to be able
to organise the data in the same way that the native multi-step facilities use. This can be
done by linking runs using the /sweep, /append and /label switches. By running simulations
in this manner, the data generated by the simulator will be organised using multi-division
vectors which are similar to 2 dimensional arrays.

Care must be taken when making topological changes between runs. Names of nodes that
are of interest must always be preserved otherwise the data generated for their voltage may
be lost of mixed up with other nodes. Note also that the data for new nodes created since
the first run will not be available. The same problems arise for device pin currents.

Linked Run Example

 ** First run

 Run /sweep start /label "Run=1" netlist.net

 ** save group name

 Let grp1 = (Groups())[0]

 ... changes to netlist

 ** second run

 Run /sweep continue /label "Run=2" /append {grp1} netlist.net

 ... changes to netlist

 ** third run

 Run /sweep continue /label "Run=3" /append {grp1} netlist.net

 ... changes to netlist

 ** fourth and final run

 Run /sweep finish /label "Run=4" /append {grp1} netlist.net

SaveDesk

SaveDesk

Saves the current window positions.. They can be restored using RestDesk. (or menu
File|Windows|Restore Desktop)

SaveGraph

 SaveGraph filename

Saves the currently selected graph to a binary file. This can subsequently be restored using
OpenGraph ()

filename Path of file.

164 Commands

SaveGroup

 SaveGroup [/force] [filename]

Saves the current group to the filename in binary format. Data can later be restored with the
OpenGroup command. If filename is not specified a dialog box will be opened allowing the
user to choose from available files. If /force is specified, any existing file will be
overwritten without prompting.

SaveRhs

SaveRhs [/nodeset] filename

Creates a file containing every node voltage, inductor current and voltage source current
calculated at the most recent analysis point. The values generated can be read back in as
nodesets to initialise the dc operating point solution. There are a number of applications for
this command - see below.

/nodeset If specified the values are output in the form of a .nodeset
command which can be read back in directly. Only node voltages
are output if this switch is specified. Otherwise, currents in voltage
sources and inductors are also output.

Filename File where output is written.

This command is intended as an aid to DC operating point convergence. Sometimes the dc
operating point solution is known from a previous run but took a long time to calculate. By
applying the known solution voltages as nodesets prior to the operating point solution, the
new DC bias point will be found much more rapidly. The method is tolerant of minor
changes to the circuit. The old solution may not be exact, but if it is close this may be
sufficient for the new solution to be found quickly.

This command also has another application for circuits where the DC operating point fails
altogether. It is nearly always possible to find the DC bias point using pseudo transient
analysis. With this method a transient analysis is performed with the bias point skipped and
all voltage and current sources set initially to zero. The sources are then ramped to their
initial values much as they would be in a real circuit when the power supplies are switched
on. The transient analysis continues until all voltages and currents have settled down. The
final result is the dc bias point solution and can be captured using SaveRhs. This can then
be applied to the main analysis.

The above procedure is described in more detail in the section on convergence, in the
Pulsonix Spice User's manual

If SaveRhs is executed after an AC analysis, the values output will be the real part only.

ScriptAbort

ScriptAbort

Aborts execution of script. Note that this command can only be usefully executed from a
key or menu item which has been defined with the direct execution option specified (option
flag 5 or /immediate switch for DefMenu). See User Defined Key and Menu Definitions.

See Also

ScriptStep

ScriptResume

ScriptPause

 Commands 165

ScriptPause

ScriptPause

Pauses a script. Execution can later be resumed with ScriptResume or single stepped with
ScriptStep. Note that this command is often executed from a key or menu item which has
been defined with the direct execution option specified (option flag 5 or /immediate for
DefMenu). ScriptPause is assigned to shift-F2 by default. Note that it is not possible to use
the normal user interface while a script is paused. The main use of script pause is to allow
single-stepping for debug purposes.

Scripts can be single stepped by executing ScriptPause immediately before starting the
script. If the "EchoOn" option is also enabled, each line of the script as it is executed will
be displayed in the message window. See Debugging Scripts.

See Also

ScriptStep

ScriptResume

ScriptAbort

ScriptResume

ScriptResume

Resumes script that has been paused with ScriptPause.

See Also

ScriptStep

ScriptPause

ScriptAbort

ScriptStep

ScriptStep

Steps a paused script by one command. See Debugging Scripts.

See Also

ScriptPause

ScriptAbort

ScriptResume

SelectCursorMode

SelectCursorMode

Switches graph window into "SelectCursor" mode. If the user left clicks the mouse button
the graph measurement cursor is placed on the nearest curve. The same operation on the
reference cursor may be performed using the right mouse button. Note that normal mode is
resumed as soon as the left or right button has been clicked.

166 Commands

SelectCurve

SelectCurve [/unselect] curve_id

OR

SelectCurve [/unselect] /all

Selects/unselects the identified curve or all curves

FORM1

Specified curve is selected or unselected.

curve_id Curve id is returned by the functions GetSelectedCurves,
GetAxisCurves and GetAllCurves

FORM2

All curves on currently selected graphs are selected or unselected.

BOTH CASES:

/unselect Curve or curves to be unselected.

SelectGraph

 SelectGraph id

Switches the graph tabbed sheet to the graph specified by id.

id Graph id.

SelectLegends

 SelectLegends [/unselect]

Selects or unselects all graph window legends.

/unselect If specified, all legends are unselected. Otherwise they are
selected.

Set

Set [/temp] [option_spec [option_spec...]]

Defines an option.

/temp If specified, the setting will only remain for the duration of the
current script execution. Value will return to its original setting
when control returns to the command line.

option_spec Can be one of two forms:
Form1: option_name

Form2: option_name = option_value

option_name Can be any of the names listed in the options section of the
“Sundry Topics Chapter” of the User's Manual. For options of
type Boolean, use form1. For others, use form 2.

SetCurveName

SetCurveName curve_id curve_name

Changes curve name. This is the name displayed in the legend panel.

curve_id Curve Id. Curve id is returned by the functions
GetSelectedCurves, GetAxisCurves and GetAllCurves

curve_name New name for curve.

 Commands 167

SetGraphAnnoProperty

 SetGraphAnnoProperty object-id property-name property-value

Sets a property value for a graph object. Note that this command's name is a little
misleading as it can edit the values of the properties of any graph object not just annotation

objects

object-id Id of object which owns the property to be edited.

property_name Name of property to be edited

Property-value New value of property.

SetGroup

SetGroup group_name

Changes the current group.

group_name Name of new group. An array of current group names is returned
by the Groups function.

SetRef

SetRef vector_name reference_expression

Attaches reference_expression to vector_name. Previous reference is detached and deleted
if no longer used.

See Also

Expressions

SetToolBarVisibility

 SetToolBarVisibility toolbar_name visibility

Sets the visibility of a toolbar.

toolbarname Either a pre-defined toolbar or a new one.

visibility Specifies when toolbar is visible.

SetUnits

SetUnits vector_name physical_type

Changes physical type of vector_name to physical_type. Physical type may be any of the
following:

"unknown" "?"
"Voltage" "V"
"Current" "A"
"Time" "Secs"
"Frequency" "Hertz"
"Resistance" "Ohm"
"Conductance" "Sie"
"Capacitance" "F"
"Inductance" "H"
"Energy" "J"
"Power" "W"
"Charge" "C"
"Flux" "Vs"
"Volt^2" "V^2"
"Volt^2/Hz" "V^2/Hz"
"Volt/rtHz" "V/rtHz"
"Amp^2" "A^2"
"Amp^2/Hz" "A^2/Hz"
"Amp/rtHz" "A/rtHz"

168 Commands

The physical type of a vector is the name of the physical quantity it represents e.g. Voltage,
Current, Time etc. This is used by graph plotting routines to set appropriate units for axes.

Shell

 Shell [/wait] [/displayStdout] [/command command_string] application_name

Launches an application.

/wait If specified, application is launched synchronously. This means
that the simulator will not continue until the application has closed.

/displayStdout Displays in the message window any standard output from the
program

/command command_string Calls system command processor to execute
command_string. This is necessary to run internal commands such
as Copy and Move. The command processor is usually CMD.EXE

application_name File system path to executable file. This would usually be a binary
executable but may be any file that is defined as executable by the
operating system. If a full path is not specified, a search will be
made for the file.

Notes

To run a console mode application in a manner such that the console is displayed, use the
ShellOld command (see below).

ShellOld

 Shell [/wait] [/icon|hide] [/command command_string] application_name

Launches an application

/wait If specified, application is launched synchronously. This means
that the simulator will not continue until the application has closed.

/command command_string Calls system command processor to execute
command_string. This is necessary to run internal commands such
as Copy and Move. The command processor is usually CMD.EXE

/icon|hide If /icon, the program is started in a minimised state. If /hide, the
program main window is initially hidden.

application_name File system path to executable file. This would usually be a binary
executable but may be any file that is defined as executable by the
operating system. If a full path is not specified, a search will be
made for the file.

Show

 Show [/file filename] [/append filename] [/noindex] [/noHeader] [/plain] [/force] [/names

 names] [/clipboard] [/width width] [/lock] expression [expression ...]

Displays the value of an expression.

/file filename If specified, outputs result to filename. The values are output in a
format compatible with OpenGroup /text.

/append filename As /file except that file is appended if it already exists.

/noindex If the vector has no reference, the index value for each element is
output if this switch is not specified.

/noHeader If specified, the header providing vector names etc. will be
inhibited.

/plain If specified, no index (as /noindex), and no header (as /noHeader)
will be output. In addition, string values will be output less the
quotation marks.

 Commands 169

/force File specified by /file will be unconditionally overwritten if it
exists.

/names names Semicolon delimited list of column labels. If specified, each vector
column will be labelled by the corresponding name given in
names. Otherwise, vector name is used as label.

/clipboard If specified, the result is copied to the windows clipboard.

/width Page width in columns.

/lock If specified with /file, a lock file will be created while the write
operation is being performed. The file will have the extension .lck.
This can be used to synchronise data transfers with other
applications. The file will be locked for write operations

expression Expression to be displayed. If expression is an array, all values
will be displayed.

Notes

To enter multiple expressions, separate each with a comma.

The display of arrays with a very large number of elements (>500) can take a long time. For
large arrays it is recommended that the /file or /clipboard switch is used to output the results
to a file or the windows clipboard respectively. The data can then be examined with a text
editor or spreadsheet program.

The results will be tabulated if all vectors are compatible that is have the same x- values. If
the any vectors listed are not compatible, each vector's data will be listed separately.

The precision of numeric values can be controlled using the “Precision” option setting. Use
the command “Set precision = value”. This sets the precision in terms of the column width.

ShowCurve

ShowCurve

Shows specified curve having been hidden using HideCurve

curve_id Id of curve to show. Curve id is returned by the functions
GetSelectedCurves, GetAxisCurves and GetAllCurves

See Also

HideCurve

ShowSimulatorWindow

 ShowSimulatorWindow

Displays simulator status window if it is currently hidden.

SizeGraph

SizeGraph [/xfull] [/yfull] [/axisid axis_id] xoffset yoffset xscale yscale

General purpose command to zoom or scroll a graph.

/xfull If specified, the x-axis is zoomed to fit whole graph. xscale and
xoffset will be ignored

/yfull If specified, the y-axis is zoomed to fit whole graph. yscale and
yoffset will be ignored

/axisid axis_id Specify which y-axis to resize. If omitted, all y-axes on selected
graph will be affected.

xoffset Extent of X-shift as proportion of full width of graph. E.g. 0.25
will shift by a quarter. 0 has no effect.

170 Commands

yoffset As xoffset but for y-axis

xscale View width required as proportion to current width. E.g. 0.8 will
zoom in by 20%. 1 has no effect. 0 is illegal.

yscale As xscale but for y-axis.

Stats

 Stats

Displays statistics relating to most recent simulation.

Note that time values other than total analysis time will not be supplied unless the simulator
option “TIMESTATS” or “ACCT” is specified.

Title

Title graph new_title

Changes a window's title.

graph Apply to selected graph window

new_title New window title

Notes

The title is displayed in the window's caption bar and is also placed at the bottom of printed
graphs.

Trace

Trace signal_name trace_id

The trace command is used to set up a simulation trace while a simulation is running. To set
up a trace before a simulation is started, use the .TRACE or .GRAPH simulator controls.

signal_name Net name or pin name for voltage or current to be traced.

trace_id Integer value used to group traces together on the same graph. All
traces with the same trace_id will go to the same graph.

Note that traces set up with this command only remain in effect until the end of the
simulation. A Trace command executed before a simulation starts will have no effect.

UndoGraphZoom

UndoGraphZoom

Restores previous graph view area. Successive execution of this command will retrace the
entire history of graph magnification and scroll positions.

UnHighlightCurves

 UnHighlightCurves

Unhighlights all curves.

 Commands 171

Unlet

Unlet vector_name

Destroy vector.

vector_name Name of vector to be destroyed. Unless the vector is in the user
group, the vector's full qualified name must be used.

See Also

Expressions

Let

Unset

 UnSet [/temp] option_name

Deletes specified option.

/temp Deletes only temporarily. Will revert to original value once control
returns to the command line.

Note that some Option values are internal. This means that they always have a value. If
such an option is UnSet, it will be restored to its default value and not deleted.

ViewFile

ViewFile filename

Opens a read only file viewer with specified file name. The file viewer is internal while the
file editor called by EditFile is an external program.

Wait

Wait

Suspends command execution until any mouse key is clicked. Wait does not suspend
commands executed directly on assignment to keystrokes or menu items. This allows the
cancel command, when assigned to a key or menu, to terminate a wait command.

Where

This command has been deleted. Instead an internal script of the same name exists, which
performs the same task as the original Where command.

The Where script displays convergence information about the most recent run.

WriteImportedModels

WriteImportedModels netlist filename

Writes all library models required by netlist to filename

172 Commands

 Applications 173

Chapter 4. Applications

User Interface

A full description of the user interface is outside the scope of this manual. Instead, in this
section, we provide a few pointers on how to go about finding how a particular feature works so
that it can be altered or adapted.

User Defined Key and Menu Definitions

Virtually the entire user interface is accessed through menus or keys all of which may be
redefined, deleted or replaced. The only parts of the UI which are not accessible are the tool bar
buttons and the mouse keys. These have fixed definitions and may not be modified by the user.

In principle it is possible to define completely new menus which bear no similarity with the
built-in menus. A more normal use of menu and key redefinition would probably be to add a
special function or perhaps to delete some unused menus.

Menus are defined using the DefMenu command and keys can be defined with the DefKey
command. Unless you only wish to make a temporary definition it is best to place DefMenu and
DefKey commands in the start up script so that they are automatically defined for all future
sessions.

Key definitions may be context sensitive. That is, the definition is dependent on which type of
window is currently active. See DefKey command for more details.

To find out the standard definition for menus and keys, use the commands ListStdMenu and
ListStdKeys respectively. These list such definitions to a file. A large number of these simply
call a script that performs the menu function. Others carry out the relevant operation directly.

Rearranging or Renaming the Standard Menus

The standard menu definitions are loaded from the built in script ‘menu’ when the program first
starts. The source for all built in (or internal) scripts can be found on the install CD. To modify
any of the standard menus, you need to modify the ‘menu’ script. For details on how to modify
internal scripts.

When editing menu.sxscr, please note the following:

• Each menu definition must occupy a single line

• Menus are created in the order they appear in the script. To change the order, simply

rearrange the lines.

• You can disable a menu definition by putting a '*' as the first character of the line. This

makes it easy to later undelete it.

Menu Shortcuts

These are keys which activate defined menus. The key name is displayed to the right of the menu
text. All menu definitions may have shortcuts specified using the "/shortcut" switch for the
DefMenu command. A potential problem arises if the same key is used for a shortcut and a key
definition using DefKey. If this happens, the DefKey definition takes precedence.

Modifying Internal Scripts

The Pulsonix-Spice user interface is implemented with about 300 internal (or built-in) scripts.
These are built in to the executable file but can be bypassed so that their function can be
changed. The code for most of these scripts can be found on the installation CD in directory
scripts. The procedure for replacing an internal script is very straightforward. Simply place a
script with the same name but with the extension .sxscr in the built-in script directory. The
location of this directory is set in the file locations sheet of the options dialog box (menu
File|Options|General...). This is usually <Pulsonix root>\Pulsonix-Spice\support\biscript.
Pulsonix-Spice always searches this directory first when executing an internal script.

174 Applications

Custom Curve/Performance/Histogram Analysis

The graph menu Measure|More Functions opens a tree list dialog box that displays the
functions available. In this section we describe how this system works and how it can be
extended.

We have only skimmed over the basics. For more information, please refer to the scripts
themselves.

Adding New Functions

The measure operations listed for the graph menu described above are obtained from a built-in
text file "analysis_tree.sxscr".

Like built in scripts, this is embedded in the binary executable but can also be overridden by
placing a file of the same name in the biscript directory.

Each entry in the tree list is defined by a single line in the file. Each line contains a number of
fields separated by semi-colons. The first field is that command that is called to perform the
action while the remaining fields describe the hierarchy for the entry in the tree list control. The
command is usually a script often with a number of arguments. To add a new function, simply
add a new line to the file. The order is not important.

"measure", "measure_span", "performance" and "mc_histo" Scripts

These are the "driver" scripts that perform the curve analysis, curve analysis over cursor span,
performance analysis and histogram analysis respectively. These don't perform the actual
calculations but carry out a number of housekeeping tasks. The calculations themselves are
performed by a script whose name is passed as an argument. To add a new function you need to
create one of these scripts. For simple functions the script is not complicated. In the example
below we show how the "Mean" function is implemented and you will see that it is very simple.

An Example: The "Mean" Function

The entry for the "Full" version of this in analysis_tree.txt is:

measure_mean;Measure;Transient;Mean;Full

This means that the script measure_mean will be called when this function is selected.

measure_mean is quite simple, it is just a single line

measure /ne 'calculate_mean' 'Mean'

/ne is not that important, it just tells the script system not to enter the command in the history

list.

'calculate_mean' specifies the script to call to perform the calculation.

'Mean' specifies the y-axis label

 The calculate_mean script is as follows:

Arguments data xLower xUpper @result @error

if xUpper>xLower then

 Let result = Mean1(data, xLower, xUpper)

else

 Let result = Mean1(data)

endif

The argument data is the data that is to be processed. In this case we simply need to find its

Mean. xUpper and xLower specify the range over which the mean should be calculated. These

would be specified if the “cursor span” version of the mean function was selected by the user.
The result of the calculation is assigned to the argument result which has been "passed by

 Applications 175

reference". The error argument is not used here but it can be used to signal an error condition

which will abort the operation. This is done by setting it to 1.

Automating Simulations

Overview

The script language allows you to automate simulations, that is automatically run a number of
simulation runs with different component values, test conditions or analysis modes. This section
describes the various commands needed to do this.

Running the Simulator

Simulations are started using the Run command. The Run command runs a netlist not a
schematic, so you must first create the netlist using the NetList command. Some notes about the
Run command:

1. The /an switch is very useful and allows you to run different analyses on the same

circuit without having to modify it. /an specifies the analysis mode instead and

overrides any analysis controls (e.g. .TRAN, .DC etc.) in the circuit itself.

2. If the run fails (e.g. due to non-convergence), the script will abort without performing

any remaining runs. This behaviour can, however, be inhibited with the /noerr switch

which must be placed immediately after the Run word:

Run /noerr /file design.net

/noerr is a general switch that can be applied to any command. If you want to test

whether or a run was successful, use the GetLastError function.

Changing Component Values or Test Conditions

It is likely that in an automated run you will want to change component values or stimulus
sources between runs. There are a number of ways of doing this, each with its own advantages
and disadvantages.

Circuit Parameters

Specify the component values as parameters in the Schematic and then vary the parameter using
the Let command. To do this, you must first use Pulsonix Schematics to edit the value of the
components to be varied so that they are represented as a parameter expression enclosed by curly
braces '{' and '}'. Again we will use the example of a resistor R5 whose value we wish to set to
12K. Proceed as follows:

1. In the schematic, select R5 then press shift-F7. Enter {R5} as the new value.

2. Now in the script you can set the value of R5 with Let e.g.

 Let global:R5=12k

The "global:" prefix is necessary to make the parameter global. Note we have named the

parameter "R5". This is an obvious choice of parameter name but you could use anything as

long as it starts with a letter and consists of letters numbers and the underscore character.

(You can use other characters but we don't recommend it).

You can use the same technique for model names and stimulus specifications. Note that a model
name is a string and has to be enclosed in single quotation marks when assigned with a Let
command. E.g.

Let global:Q1='Q2N2222'

(The different uses of single and double quotation marks causes confusion. This is explained in
Quotes: Single and Double.

176 Applications

For stimulus specifications there are two methods. You can either use a parameter to vary a
single value such as the pulse width or you can use a string parameter to vary the entire
specification. For a single value - say the pulse width - set the schematic component value (using
shift-F7) to "Pulse 0 5 0 10n 10n {PW} 2.5u". Then in the script the pulse width can be changed
with:

Let global:PW=1u

To vary the whole specification, set the component value to - say - "{PULSE_SPEC}" then in
the script:

Let global:PULSE_SPEC = 'Pulse 0 5 0 10n 10n 1u 2.5u'

An alternative, and somewhat more sophisticated approach is to change the component value to
parameter version (e.g. "{R5}") in the netlist itself. You could then run simulation on the netlist
with parameterised values after which the components in the netlist can be restored to their
original values. That way the netlist is preserved with its original values. To do this correctly you
would need to save the original values so that they can be restored. The example shown below
uses this technique.

Multiple Netlists

Conceptually this is probably the simplest approach but not very flexible. Simply create multiple
versions of the netlist manually with different file names then run them one at a time.

An Advanced Example - Reading Values from a File

In this section we supply an example of quite an advanced script which runs several simulations
on a netlist. On each run a number of components are changed to values read in from a file. This
script is general purpose and can be used for any netlist without modification.

The script is quite complicated but is well commented throughout to explain in detail how it
works. The basic sequence is as follows:

1. Get netlist file name from user

2. Get definition file name from user

3. Read first line of the definition file. This has the names of the components to be
 modified

4. Temporarily edit the specified components' values in the netlist to reference a
 parameter, saving the original values.

5. Read the rest of the definition file and write the values for each run to an array

6. Run the simulations

7. Restore original values in the netlist

8. Clean up before exit

Here is the script. It is also supplied on the disk in the scripts directory in a file called
‘multiple_simulations.sxscr’.

**---

** Get the netlist from the user

**---

** First see if there is a current netlist, and use it if there is

Let netlist = global:lastNetlist

if Length(netlist)=0 then

 Let netlist = GetUserFile("'Netlist Files|*.net;*.cir'", 'net', ['Open'])

 if Length(netlist)=0 then

 ** cancelled

 exit script

 Applications 177

 endif

endif

Let netlistLines = ReadFile(netlist)

Let numNetlistLines = Length(netlistLines)

** Test if enough lines

if numNetlistLines<2 then

 Echo "Invalid netlist file"

 exit script

endif

**---

** Get the parameter definition file from the user

**---

Let filename = GetUserFile("'Parameter Definition Files|*.txt'", 'txt', ['Open'])

if Length(filename)=0 then

 ** cancelled

 exit script

endif

Let lines = ReadFile(filename)

Let numLines = Length(lines)

** Test if enough lines

if numLines<2 then

 Echo "Definition file must have at least two lines"

 exit script

endif

**---

** Read in the component names

**---

Let components=Parse(lines[0])

Let numComponents = Length(components)

if numComponents=0 then

 Echo "No component names specified on first line of definition file"

 exit script

endif

**---

** Change the netlists component values to parameters

**---

Let originalNetlistLines = MakeString(numNetlistLines)

Let originalNetlistLines = netlistLines

178 Applications

** scan through list of components

for compIndex =0 to numComponents-1

 Let found = 0;

 for netlistIndex=1 to numNetlistLines-1

 ** Parse the line into individual values

 Let netlistValues = Parse(netlistLines[netlistIndex])

 Let numNetlistValues = Length(netlistValues)

 if numNetlistValues>0 then

 ** We have a device name, unless it starts with a dot

 ** Use numNodes = 999 to signify an invalid line

 Let numNodes = 999

 Let firstChar = Char(netlistValues, 0)

 if firstChar = 'B' then

 Let numNodes = 2

 elseif firstChar = 'C' then

 Let numNodes = 2

 elseif firstChar = 'D' then

 Let numNodes = 2

 elseif firstChar = 'E' then

 Let numNodes = 4

 elseif firstChar = 'F' then

 Let numNodes = 2

 elseif firstChar = 'G' then

 Let numNodes = 4

 elseif firstChar = 'H' then

 Let numNodes = 2

 elseif firstChar = 'I' then

 Let numNodes = 2

 elseif firstChar = 'J' then

 Let numNodes = 3

 elseif firstChar = 'M' then

 Let numNodes = 4

 elseif firstChar = 'O' then

 Let numNodes = 4

 elseif firstChar = 'Q' then

 Let numNodes = 3

 elseif firstChar = 'R' then

 Let numNodes = 2

 elseif firstChar = 'S' then

 Let numNodes = 4

 elseif firstChar = 'T' then

 Let numNodes = 4

 elseif firstChar = 'V' then

 Let numNodes = 2

 elseif firstChar = 'Z' then

 Let numNodes = 3

 endif

 Applications 179

 if numNetlistValues>numNodes+1 then

 ** got enough entries (name , nodes and a value)

 if netlistValues[0]={components[compIndex]} then

 ** found component

 ** Set new value as a parameter with same name as comp reference

 Let netlistValues[3] = "'{' & components[compIndex] & '}'"

 ** re-create netlist line with parameter in it

 Let netlistLines[netlistIndex] = netlistValues[0]

 for valIndex=1 to numNetlistValues-1

 Let netlistLines[netlistIndex] = netlistLines[netlistIndex] & ' ' &

netlistValues[valIndex]

 next valIndex

 Let found = 1

 exit for

 endif

 endif

 endif

 next netlistIndex

 if found=0 then

 Echo "Cannot find component " {components[compIndex]}

 endif

next compIndex

Show /plain /force /file {netlist} netlistLines

**---

** Read in the component values

**---

Let compValues = MakeString(numComponents*(numLines-1))

Let error = 0

Let resIndex=0

for lineIndex=1 to numLines-1

 ** Parse the line into individual values

 Let values = Parse(lines[lineIndex])

 if Length(values)<>numComponents then

 ** A line found with the wrong number of values. This is assumed

 ** to be a mistake unless the line is completely empty

 if Length(values)<>0 then

 Echo "Wrong number of values at line " {lineIndex}

 Let error = 1

 endif

 else

 ** line is OK so write values to compValues

 for index=0 to numComponents-1

180 Applications

 Let compValues[resIndex*numComponents+index] = values[index]

 next index

 Let resIndex = resIndex+1

 endif

next lineIndex

if error then

 exit script

endif

** resIndex finishes with the number of non-blank data lines

Let numRuns = resIndex

**---

** run the circuit

**---

for index=0 to numRuns-1

 for compIndex=0 to numComponents-1

 Let paramName = 'global:' & components[compIndex]

 Let {paramName} = compvalues[index*numComponents+compIndex]

 next compIndex;

 Run /file {netlist}

next index

**---

** restore netlist to original

**---

Show /plain /force /file {netlist} originalNetlistLines

**---

** delete global varaibles

**---

for compIndex=0 to numComponents-1

 Let paramName = 'global:' & components[compIndex]

 UnLet {paramName}

next compIndex

**---

exit script

 Applications 181

Data Import and Export

This section is also in the Pulsonix SpiceUser's manual. It is reproduced here for convenience.

Pulsonix Spice provides the capability to export simulation data to a file in text form and also to
import data from a file in text form. This makes it possible to process simulation data using
another application such as a spreadsheet or custom program.

Importing Data

To import data use the OpenGroup command with the /text switch. E.g. at the command line
type:

OpenGroup /text data.txt

This will read in the file data.txt and create a new group called textn. See Data Files Text Format
below for details of format.

Exporting Data

To export data, use the Show command with the /file switch. E.g

Show /file data.txt vout r1_p q1#c

will output to data.txt the vectors vout, r1_p, and q1#c. The values will be output in a form
compatible OpenGroup /text.

Launching Other Applications

Data import and export makes it possible to process simulation data using other applications.
Pulsonix Spice has a facility to launch other programs using the Shell command. You could
therefore write a script to export data, process it with your own program then read the processed
data back in for graphing. To do this you must specify the /wait switch for the Shell command to
force Pulsonix Spice to wait until the external application has finished. E.g.

Shell /wait procdata.exe

will launch the program procdata.exe and will not return until procdata.exe has closed.

Data Files Text Format

There are two alternative formats.

The first is simply a series of values separated by whitespace. This will be read in as a single
vector with a reference equal to its index.

The second format is as follows:

A text data file may contain any number of blocks. Each block has a header followed by a list of
datapoints. The header and each datapoint must be on one line.

The header is of the form:

 reference_name ydata1_name [ydata2_name ...]

Each datapoint must be of the form:

 reference_value ydata1_value [ydata2_value ...]

The number of entries in each datapoint must correspond to the number of entries in the header.

The reference is the x data (e.g. time or frequency).

Example

 Time Voltage1
 Voltage2

 0 14.5396 14.6916

 1e-09 14.5397 14.6917

 2e-09 14.5398 14.6917

182 Applications

 4e-09 14.54 14.6917

 8e-09 14.5408 14.6911

 1.6e-08 14.5439 14.688

 3.2e-08 14.5555 14.6766

 6.4e-08 14.5909 14.641

 1e-07 14.6404 14.5905

 1.064e-07 14.6483 14.5821

If the above was read in as a text file (using OpenGroup /text), a new group called textn where n
is a number would be generated. The group would contain three vectors called time, “Voltage1”
and “Voltage2”. The vectors “Voltage1” and “Voltage2” would have a reference of “Time”.
“Time” itself would not have a reference.

To read in complex values, enclose the real and imaginary parts in parentheses and separate with
a comma. E.g:

 Frequency : VOUT

 1000 (-5.94260997 ,0.002837811)

 1004.61579 (-5.94260997 ,0.00285091)

 1009.252886 (-5.94260996 ,0.002864069)

 1013.911386 (-5.94260995 ,0.002877289)

 1018.591388 (-5.94260994 ,0.00289057)

 1023.292992 (-5.94260993 ,0.002903912)

 1028.016298 (-5.94260992 ,0.002917316)

 1032.761406 (-5.94260991 ,0.002930782)

 1037.528416 (-5.9426099 ,0.00294431)

 1042.317429 (-5.94260989 ,0.0029579)

 1047.128548 (-5.94260988 ,0.002971553)

 1051.961874 (-5.94260987 ,0.002985269)

Graph Objects

Overview

Graph objects are the items displayed in a graph window. These include curves, axes, cursors
and the various objects used for annotation. All graph objects possess a number of named
properties all of which may be read and some may also be written. Each graph object also has a
unique id which is used to identify it.

A knowledge of the inner workings of graph objects will be useful if you wish to customise some
of the annotation features provided by the waveform viewer. However, the interface is at a low
level with much work carried out by internal scripts. Consequently there is quite a steep learning
curve to climb in order to make good use of the features available.

 Applications 183

Object Types

The following table lists all the available object types

Object name Description

Axis Axes and grids

Crosshair Crosshair part of cursor

CrosshairDimension Object used to dimension cursors. Forms part of

cursor. Cannot be displayed on its own

Curve Curve

CurveMarker Marker used to annotate curves

FreeText Free Text annotation object. Displays unboxed text on

graph

Graph Graph sheet

LegendBox Box enclosing LegendText objects

LegendText Text objects used in legend boxes and linked to a

displayed curve.

TextBox Box enclosing FreeText object

Properties

Properties are the most important aspect of graph objects. Each type of graph object possesses a
number of properties which determine characteristics of the object. Some properties are read
only and are either never altered or can only be altered indirectly. Other properties can be
changed directly using the command SetGraphAnnoProperty. The labels for curves, axes and the
various annotation objects are examples of properties that may be edited.

Graph Object Identifiers - the “ID”

Each instance of a graph object is uniquely identified by an integer value known as its “ID”.
Valid IDs always have a value of 1 or greater. IDs are returned by a number of functions (see
below) and also a number of the objects possess properties whose value is the ID of a related
object.

Once the ID of an object has been obtained, its property names can be read and it property values
may be read and/or modified.

The following functions return graph object IDs. Note that all functions return object IDs
belonging to the currently selected graph only except for GetGraphObjects which can optionally
return IDs for objects on a specified graph.

GetAllCurves Returns the IDs for all curves

GetAllYAxes Returns the IDs for all Y-axes

GetAxisCurves Returns IDs for all curves attached to specified y- axis

 GetCurrentGraph Returns the ID for the currently selected graph sheet

 GetCursorCurve Returns information about curve attached to the main

cursor including its ID

GetCurveAxus Returns ID of y-axis associated with a curve.

GetDatumCurve Returns information about curve attached to the

reference cursor including its ID

GetGraphObjects Returns all objects on a graph, or objects of a specified

type

 GetSelectedCurves Returns IDs of all selected curves

 GetSelectedGraphAnno Returns ID of the selected annotation object

 GetSelectedYAxis Returns the ID of the selected Y-axis

GetXAxis Returns the ID of the X-axis

Some of the functions in the above list are technically redundant. For example the value obtained
by GetCurveAxis() can also be obtained by reading the value of the 'Y-axis' property of the
curve. This can be done with the general purpose GetGraphObjPropValue function.

184 Applications

Symbolic Values

Some properties used for labels may be given symbolic values. Symbolic values consist of a
property name enclosed with the '%' character. When the label is actually displayed the property
name is replaced with its value.

Symbolic values may also be indirect. Some properties return the id of some other associated
object and the value of a property for that object may be referenced with a symbolic value. The ':'
character is used to denote indirect symbolic values. For example, this method is used with curve
markers. The default value for a curve marker's label is:

 %curve:label%

“curve” is a property of a curve marker that returns the id of the curve that it points to. “label” is
a property of a curve that returns the label assigned to it. So “curve:label” returns the label of the
curve that the curve marker points to.

Other curve properties can be used for this label. For example, curve measurements (as displayed
below the legend in the legend panel) can also be accessed via property named “measurements”.
So the curve marker label:

 %curve:label% %curve:measurements%

would display the curve's name followed by its measurements.

Finally the character sequence <n> can be used to denote a new line.

Objects and Their Properties

The following lists all the properties available for all objects. Note that all objects have a 'Type'
property that resolves to the object's type name. Also all objects except Graph have a 'Graph'
property that returns the ID of the object's parent graph sheet.

Axis

Axis objects represent both x and y graph axes

Name Description Read Only?

Type Type of object - always 'Axis' Yes

Graph ID of parent graph Yes

AxisType 'X', 'Y' or 'Dig' Yes

Label Label used to annotate axis. (Actual displayed text is

<label> / <unit>). Default = %DefaultLabel%

No

Name Axis name. ('Y1', 'Y2' etc.). Empty for X and Dig

axes

Yes

Unit Physical units of axis. (E.g. 'V', 'A' etc.). Default =

%DefaultUnit%

No

Min Minimum limit of axis No

Max Maximum limit of axis No

AutoLimit 'On' or 'Off' determines whether axis limits are

adjusted automatically according to attached curves

No

Grad Grading of axis: “Log” or “Lin”. No

Delta Value that determines the minor grid line spacing No

DefaultLabel Label property is given default value of

%DefaultLabel% which resolves to the value of this

property.

Yes

DefaultUnit Unit property is given default value of

%DefaultUnit% which resolves to the value of this

property.

Yes

 Applications 185

Crosshair

Object used to display cursor. Each graph cursor consists of a Crosshair and two
CrosshairDimensions.

Name Description Read Only?

Type Type of object - always 'Crosshair' Yes

Graph ID of parent graph Yes

X1 X data value of crosshair position No

Y1 Y data value of crosshair position. The value can

be written but this can only affects non-

monotonic curves where there are multiple y

crossings at a given x value.

No

XDimension The ID for the CrosshairDimension object that

displays the X dimension and positions

Yes

YDimension The ID for the CrosshairDimension object that

displays the Y dimension and positions

Yes

Point 1 = Main cursor. 2 = Reference cursor Yes

Curve ID of attached curve No

Division Division index of attached curve. See page for

details on multi-division vectors

No

Style Style of crosshair. Possible values: 'Crosshair' or

'Cursor'. 'Crosshair' means the object is displayed

as a crosshair with a width and height that extends

to cover the whole grid. 'Cursor' means that the

object is a small bitmap representing a cross.

No

Frozen 'On' or 'Off'. If 'On' the user will not be able to

move the cursor with the mouse

No

OldStepMethod 'On' or 'Off'. Selects method of choosing the

position of the cursor when stepped to a new

curve using the TAB key.

No

CrosshairDimension

Object used to display the dimensions and positions of cursors. There are two types, namely
horizontal and vertical.

Name Description Read Only?

Type Type of object - always 'CrosshairDimension' Yes

Graph ID of parent graph Yes

X1 For horizontal types, holds the value of the x data

position of the first crosshair and is readonly. For

vertical types holds the x view co- ordinate location

of the object on the screen and is writeable

No

Y1 For vertical types, holds the value of the y data

position of the first crosshair and is readonly. For

horizontal types holds the x view co- ordinate

location of the object on the screen and is writeable

No

X2 For horizontal types, holds the value of the x data

position of the second crosshair and is readonly. For

vertical types holds the view co- ordinate location of

the object on the screen and is writeable

No

Y2 For vertical types, holds the value of the y data

position of the second crosshair and is readonly. For

horizontal types holds the x view co-ordinate location

of the object on the screen and is writeable

No

XDiff = X2-X1 No

186 Applications

YDiff = Y2-Y1 No

Label1 Label positioned to depict value of first crosshair.

Default = %x1% for horizontal types, %y1% for

vertical.

No

Label2 Label positioned to depict value of second crosshair.

Default = %x2% for horizontal types, %y2% for

vertical.

No

Label3 Label positioned to depict the separation between

crosshairs. Default = %XDiff% for horizontal types,

%YDiff% for vertical.

No

Style Controls display of dimension labels. Possible values:

Internal Show
difference only (label3) -
internal position

External Show difference only (label3) - external

position

Auto Show difference only (label3), position

chosen automatically

P2P1 Show absolute labels (label1 and label2)

P2P1Auto Show all labels. Difference position

chosen automatically

None No controls selected

No

Font Font used to display labels. Can either be the name of

a font object or a font spec as returned by

GetFontSpec.

No

Vertical 0 = Horizontal dimension, 1 = Vertical dimension Yes

Curve1 ID of curve attached to crosshair 1 Yes

Curve2 ID of curve attached to crosshair 2 Yes

Crosshair1 ID of crosshair 1 Yes

Crosshair2 ID of crosshair 2 Yes

Curve

Curve objects represent all graph curves

Name Description Read Only?

Type Type of object - always 'Curve' Yes

Label The curve's label. This is the text that appears in

the legend panel. This can use a symbolic constant

and in fact defaults to %DefaultLabel%. Note that

when reading back a symbolic value assigned to

this property, the resolved value will be returned

No

Name The curve's base name. This is the value passed to

the /name switch of the Curve/Plot command or the

name of the vector plotted if no /name switch is

supplied.

No

Suffix This is assigned when the result of a multi- step

analysis is plotted to give information about the

step. E.g. if you stepped a resistor value the suffix

would hold the name and value of the resistor at

the step.

No

Graph ID of parent graph Yes

GroupName The data group that was current when the curve

was created

Yes

 Applications 187

DefaultLabel This is composed from Name, Suffix and

GroupName to form a text string that is the default

label for the curve

Yes

Measurements Measurements added to a curve Yes

Limits The X an Y limits of the curve in the form '[xmin,

xmax, ymin, ymax]'

Yes

ShortLabel A label composed from Name and Suffix but

without group name

Yes

XAxis ID of x-axis attached to curve Yes

XUnit Physical type of curve's x-data Yes

YAxis ID of y-axis attached to curve Yes

YUnit Physical type of curve's y-data Yes

NumDivisions Number of divisions in curves data. I.e. the number

of separate traces in a group of curves. Groups of

curves are usually produced by Monte Carlo

analyses

Yes

CurveMarker

An object used to title a curve or mark a feature.

Name Description Read Only?

Type Type of object - always 'CurveMarker' Yes

Graph ID of parent graph Yes

X1 X-data value at arrowhead No

Y1 Y-data value at arrowhead No

X2 X position of label in view units relative to

arrowhead

No

Y2 Y position of label in view units relative to

arrowhead

No

Label Label of curve marker. May be a symbolic

value. Default is %curve:label% which returns

the label of the attached curve

No

LabelJustification Text Alignment. May be one of these values:

-1 Automatic

0 Left-Bottom

1 Centre-Bottom

2 Right-Bottom

12 Left-Middle

13 Centre-Middle

14 Right-Middle

8 Left-Top

9 Centre-Top

10 Right-Top

No

Curve ID of attached curve No

Division Division index of attached curve Yes

Font Font for label No

SnapToCurve 'On' or 'Off'. If 'On' marker tracks attached

curve i.e its y position is determined by the y

value of the curve at the marker's x position. If

'Off' marker may be freely located.

No

188 Applications

FreeText

Free text objects are items of text with no border or background that are not attached to any other
object

Name Description Read Only?

Type Type of object - always 'FreeText' Yes

Graph ID of parent graph Yes

X1 X location of object in view units No

Y1 Y location of object in view units No

Label Text displayed. Symbolic values may be used.

E.g. %Time% will display the time the object

was created.

No

LabelJustification As CurveMarker (see above) except -1

(automatic) not allowed

No

Font Font for label No

Parent ID of parent object. If text is placed freely on

the graph, this will be the same as the Graph

property. FreeText objects. however are also

used in TextBoxes in which case this returns the

id for the TextBox

Yes

Date Date that the object was created. If the object is

on a graph that has been saved to a file then

subsequently restored, the date will be the date

that the object was originally created.

Yes

Time Time that the object was created. If the object is

on a graph that has been saved to a file then

subsequently restored, the time will be the time

that the object was originally created.

Yes

Version Product name and version Yes

Graph

Name Description Read Only?

Type Type of object - always 'Graph' Yes

CursorStatusDisplay Sets method of displaying cursor positions

and dimensions. Possible values:

Graph Display on graph using

CrosshairDimension object

StatusBar Display on status bar

Both Display on both graph and status bar

No

Path Path of file to save to. This is the file that

will be used by the "File|Save" menu. When

saving a graph, this property will be set to

the full path name of the file.

No

TabTitle The text in the title of the tabbed sheet. This

can be symbolic. Default is

%SourceGroup% %FirstCurve:Label%

No

TitleBar Text to be displayed in the graph window

title bar when the graph's sheet is in view.

This may be symbolic. Default is

%SourceGroup% (%GroupTitle%)

No

MainCursor ID of Crosshair object comprising the main

cursor. Value = -1 if cursors are not enabled.

Yes

 Applications 189

RefCursor ID of Crosshair object comprising the

reference cursor. Value = -1 if cursors are

not enabled.

Yes

SourceGroup The data group that was current when the

graph was created

Yes

FirstCurve ID of the oldest curve on the graph Yes

GroupTitle Title of the data group that was current when

the graph was created

Yes

The Graph object represents a graph sheet

LegendBox

The LegendBox is used to display labels for every curve on the graph sheet. It consists of a box
that is loaded with LegendText objects - one for each curve on the graph. The LegendText
objects are automatically loaded when a curve is added to the graph and automatically deleted
when a curve is deleted. LegendBox is very similar to the text box and shares the same
properties with the following differences and additions:

1. Type property has the value 'LegendBox'

2. LegendBox has one additional property as shown below

Name Description Read Only?

LegendLabel Text of label that is loaded into box when a curve is

added to the graph. This can be symbolic in which

case it references properties of the LegendText

object that displays the text. The default value is

%DefaultLabel%

No

LegendText

LegendText objects are used to load legend boxes and cannot be instantiated independently.
They are similar to FreeText objects and share the same properties with the following differences
and additions:

1. Type property has the value 'LegendText'

2. The Label property is set to the value of the legend box's LegendLabel property when it

is added to the box.

3. LegendBox has two additional properties as shown below

Name Description Read Only?

Curve ID of attached curve Yes

DefaultLabel The default value for the label. Actually equivalent

to %Curve:Label%<n>%Curve:Measurements%.

(<n> denotes a new line).

Yes

TextBox

A TextBox consists of a border with a definable background colour into which a FreeText object
may be added. TextBox is also the basis of the LegendBox object.

Name Description Read Only?

Type Type of object - always 'TextBox' Yes

Graph ID of parent graph Yes

X1 X location of object in view units No

Y1 Y location of object in view units No

X2 Physical width of box in mm. (Ignored if AotoWidth='On') No

Y2 Physical height of box in mm No

AutoWidth 'On or 'Off''. If 'On' the width of the box is automatically adjusted according

to its contents subject to MaxHeight

No

190 Applications

Colour Background colour. Either the name of a colour object or a colour

specification.

No

Font Font used for text objects added to the box. In practice this only affects the

LegendBox object which is based on TextBox.

No

MaxHeight Maximum physical height in mm of box. This is only used when

AutoWidth='On'

No

Objects List of object IDs owned by box. Each item is separated by a ';'. A TextBox

may only contain one object but the LegendBox object which is based on

TextBox may have multiple objects.

Yes

Graph Co-ordinate Systems

Three different units of measure are used to define the location and dimensions of an object on a
graph sheet. These are ‘View units’, ‘Physical units’ and ‘Data units’. These are explained as
follows:

‘Physical Units’ relate to the physical size of the displayed object and have units of millimetres.
Physical units are only used for dimensions of some annotation objects and are not used for
location. When objects are displayed on a screen an assumption is made for the number of pixels
per inch. This depends on the display driver but is typically in the range 75 - 100.

‘Data Units’ relate to the units of the X and Y axes. Typically an object such as curve marker is
located using data units so that it always points to the same point on a curve regardless of how
the graph is zoomed or scrolled.

‘View Units’ relate to the current viewable area of the graph. View units use a co- ordinate
system whereby the bottom left of the grid area is co-ordinate (0,0) and the top right corner of
the grid is co-ordinate (1,1). View units are used to define the location of objects that need to be
at a fixed location on the graph irrespective of zoom magnification.

Event Scripts

There are three special scripts that are automatically called by the simulator system in response
to user events. These scripts are detailed in the following table:

on_graph_anno_doubleclick Called when the user double clicks on certain graph

objects

on_accept_file_drop Called when a file of directory is dropped on a

simulator window.

All three scripts are defined internally but can be customised if desired. Details on these event
scripts follow.

on_graph_anno_doubleclick

The script is called when some graph objects are double clicked.

The script is passed two arguments when it is called. The first is the object's ID and the second is
specific to the object that is double clicked. Currently the second argument is only used by
curves and is set to its division index.

on_accept_file_drop

This is called when an a file, folder or group or files and/or folders is dropped on the command
shell or graph window.

Two arguments are passed. The first identifies the window type. This may be one of:

Graph Graph window

Shell Command shell

The second argument contains a list of full path names of the objects dropped. The items are
separated by semi-colons.

 Applications 191

User Defined Script Based Functions

Overview

The script language provides a method of creating user defined functions that can be used in any
front end expression. These expressions may be used in scripts or on the command line.

User defined functions are used to define some of the goal functions designed for performance
and histogram analysis. The scripts for these all begin “uf_” and are registered using the
“reg_user_funcs” script. The source for these can be found on the installation CD.

Defining the Function

User defined functions are defined as a script. The arguments to the function and the return value
from the function are passed as the script's arguments. The script's first argument is passed by
reference and is the return value while the remaining arguments are the arguments passed in the
call to the function. The function may have up to seven arguments and they may be of any type.
See example below.

Registering the Script

For the expression evaluator to recognise the function name, the script and function name must
be registered. This is done with the RegisterUserFunction command. The definition of this is:

 RegisterUserFunction Function-Name Script-Name [min-number-args]
 [max-number-args]

Note that function registration is not persistent. That is the registration only lasts for the current
session. If you wish to make a permanent function definition, place the RegisterUserFunction
command in the startup script.

Example

Here is a trivial example. The following shows the steps to create a function that multiplies a
number by 2. First the script

 Arguments @rv arg1

 Let rv = 2*arg1

Save this to a file called - say - times_two.sxscr and place it in the script directory.

Now, register the script as a function called “Times2”. To do this, execute the command:

 RegisterUserFunction Times2 times_two 1 1

The definition is now complete. To test it type at the command line:

Show Times2(2)

You should see the result:

 Times2(2) = 4

Non-interactive and Customised Printing

Overview

The Pulsonix Spice script language provides a number of functions and commands that allow
non-interactive printing. That is printing without user intervention. This is useful for - say -
running multiple simulations in the background and automatically printing the results when the
simulation is complete. The same printing facilities may also be used to customise the layout of
printed graphs.

The available printing commands are:

ClosePrinter, NewPrinterPage, OpenPrinter. PrintGraph

The functions are:

GenPrintDialog (for interactive printing), GetPrinterInfo

192 Applications

Each of these commands and functions is described in detail in its relevant section. Here we give
a general overview for the printing procedure.

Procedure

The sequence for a print job is:

1. Open printer. At this stage the printer to be used, page orientation, title and number of
copies may be selected.

2. Print pages. The actual graphs to be printed along with scaling and margins are specified
here. Any number of pages can be printed.

3. Close printer. This actually starts the physical printing. It is also possible to abort the
print job.

Example

Suppose we wish to create a PDF file using "Acrobat Distiller" for the current graph. Of course
you can readily do this by selecting File|Print... and making the appropriate selections using the
dialog box. This is no good, however, if you want to create a PDF file for a graph created using
an automated simulation, perhaps run overnight. The following script will do this without user
intervention.

** Get info on system printers

Let printInfo = GetPrinterInfo()

** Search for acrobat distiller. The printer list from GetPrinterInfo

** starts at index 2 so we subtract 2 to get the index

** needed by OpenPrinter

Let distillerIndex = Search(printInfo, 'Acrobat Distiller')-2

** If Acrobat distiller is not on the system

** Search will return -1

if distillerIndex<0 then

 Echo "Acrobat Distiller is not installed"

 exit script

endif

** Open Printer using distiller.

** Orientation will be landscape which is the default

** Number of copies = 1.

** The title will be used by distiller to compose the file name

** for the PDF file i.e. Graph1.PDF

OpenPrinter /title Graph1 /index {distillerIndex}

** Now print the graph

** Major axis on minor axis off. All margins 20mm.

PrintGraph /major on /minor off /margin 20 20 20 20 /caption "Test Print"

** Close Printer. This will actually start the print

ClosePrinter

You can of course replace 'Acrobat Distiller' with any printer that is on your system. You must
use the printer's name as listed in the Printers section of the system control panel. You can also
find a list of system printers from within Pulsonix Spice by typing at the command line:

Show GetPrinterInfo()

 Applications 193

The first two values are numbers but the remaining are the currently installed printers on your
system.

If you omit /index switch for the OpenPrinter command, the application default printer (not

the system default printer) will be used. The application default printer is the same as the system
default printer when Pulsonix Spice starts but will change whenever you select a different printer
using the File menu and Print... option.

Creating and Modifying Toolbars

From version 2, Pulsonix Spice allows the complete customisation of toolbars. You can modify
the definitions of existing toolbars and buttons, as well as create new toolbars and new tool
buttons. This section explains how.

Modifying Existing Toolbars and Buttons

You can rearrange the button layout of existing toolbars by modifying the ‘Set’ option variables
that define them.

The following table shows the name of the ‘Set’ variable to use for each one.

‘Set’ Variable Name Toolbar

CommandShellMainButtons CommandShellMain

CommandShellMainNoSchemButtons CommandShellMain

GraphMainButtons GraphMain

The ‘Set’ variable should be set to a value consisting of a semi-colon delimited list of valid
button names.

To determine the current definition, use the GetOption function with the ‘Set’ variable name as
described in the table above.

Redefining Button Commands

You can change the command executed when a button is pressed using the command DefButton.

You can redefine any of the pre-defined buttons.

Defining New Buttons and Editing Buttons

You can define completely new buttons with your own graphic design and add them to an
existing toolbar. The same method can also be used to redefine the graphics for existing buttons.

This is done using the command CreateToolButton. These are the steps to take:

1. Create a graphical image for the button. This should be in a windows bitmap (.bmp),
portable network graphic (.png) or JPEG (.jpg) format. You can use almost any paint
application to do this. But, if you want to define a mask - that is you wish to define
transparent areas - then you must use an editor capable of creating ‘portable network
graphics’ (PNG) images. However, this is rarely necessary in practice and none of the built
in graphics define a mask. This is because the simulator will automatically create one that
makes the area outside the perimeter of the image transparent. The result is usually
satisfactory.
You can make your graphic any size, but to be compatible with the built-in images, you
should make them 16x16 pixels. The built-in graphics are all 16 colour, but you can use any
colour depth supported by your system.
When you have created your image, you should save or copy it to the images directory. This
is located at:

 …\support\images

2. Execute the command CreateToolButton. As with menu and key definitions, the definitions
created by this command are not persistent that is they will be lost when Pulsonix Spice
exits. To make permanent definitions, you should place the commands in the start up script.
See Startup Script for more details.
CreateToolButton will not add the button to any toolbar nor does it assign a command to be
executed when it is pressed. These operations are described in the following steps.

194 Applications

3. Define a command to be executed when this button is pressed. This is done using the
command DefButton. Again, this should be place in your startup script.

4. Add the button to a toolbar. See “Modifying Existing Toolbars and Buttons” to find out how
to add this to an existing toolbar. If you wish to create a new toolbar for the new button, see
“Creating New Toolbars” below.

Creating New Toolbars

To create a completely new toolbar, use the command Create ToolBar. This will create an empty
toolbar.

To add buttons to a new toolbar, you must use the command Define ToolBar. You can add both
pre-defined and user-defined buttons to a custom toolbar.

Pre-defined Buttons

The following table lists all the buttons that are pre-defined. All of these buttons may be
redefined if required.

The bitmaps are embedded in the program binary, but can also be found on the install CD in the
directory script/images.

The command executed by each button can be found using the command ListStdButtonDefs.

 Index 195

Index

B

Braced substitutions, 26

C

Collections, 31
Colours

ChooseColour command, 133
Commands

About, 130
AddLegendProp, 132
Cd, 133
ChooseColour, 133
Close, 133
CloseGraphSheet, 133
CursorMode, 135
DefItem, 138
DefKey, 142
DefMenu, 144
DelCrv, 146
DeleteAxis, 146
DelLegendProp, 147
DelMenu, 147
Display, 147
Execute, 148
Focus, 149
Font, 149
GraphZoomMode, 149
Help, 149
HideCurve, 150
KeepGroup, 150
Let, 150
ListModels, 152
ListStdKeys, 152
ListStdMenu, 152
LoadModelIndex, 152
MakeAlias, 153
MakeCatalog, 153
Mcd, 153
Md, 154
MessageBox, 154
NewAxis, 154
NewGraphWindow, 154
NewGrid, 154
NoPaint, 154
Pause, 156
PlaceCursor, 156
Plot, 156
Quit, 158
Rd, 158
Redirect, 160
RegisterDevice, 160
Reset, 161
RestDesk, 161
Resume, 161
SaveDesk, 163
SaveRhs, 164
ScriptAbort, 164

ScriptPause, 165
ScriptResume, 165
ScriptStep, 165
SelectCursorMode, 165
SelectCurve, 166
SetCurveName, 166
SetGroup, 167
SetRef, 167
SetUnits, 167
ShowCurve, 169
SizeGraph, 169
Title, 170
Trace, 170
UndoGraphZoom, 170
Unlet, 171
Wait, 171

D

Defining keys, 173
DefKey command, 142
ListStdKeys command, 152

Defining menus, 173
DefMenu command, 144
DelMenu command, 147
ListStdMenu command, 152

E

Exporting data, 181
Expressions

command line, 26
in scripts, 24

F

Functions
AddRemoveDialog, 33
BoolSelect, 33
ChooseDir, 33
EditSelect, 33
GetFilecd, 33
InputGraph, 33
RadioSelect, 33
ValueDialog, 33

G

Global variables, 23
Graphs

plotting
Plot command, 156

Groups, 30
current, 30

I

Importing data, 181

M

Menus
Simulator|Change Data Group..., 30
Simulator|Keep Current Data Group, 30

N

New line character, 22

196 Index

P

Physical type, 33
Properties

graph legend
AddLegendProp command, 132

R

Reference, vector, 33

S

Safe Operating Area Testing, 81
Scripts, 15

braced substitutions, 26
bracketed lists, 26
built-in, 36
commands, 27
constants, 21
controlling execution, 34
ScriptPause command, 165
ScriptResume command, 165
ScriptStep command, 165
debugging, 36
empty data, 23
errors, 34

executing, 35
exit statements, 30
expressions, 24
for statement, 29
functions, 25
global variables, 23
if statement, 28
loops, 15, 16, 17
new line, 22
operator precedence, 25
tutorial, 15
type conversion, 27
types, 21
variables, 21
vectors, 22
while statement, 29

SOA, 81

T

Type conversion (scripts), 27

V

Vector reference, 33
vectors, 22

